Triangle QRS has vertices [tex]\( Q(8, -6), R(10, 5), \)[/tex] and [tex]\( S(-3, 3) \)[/tex]. What are the coordinates of the vertices of the image of the triangle after a translation of [tex]\( T_{-7.6, 4.3}(x, y) \)[/tex]?

[tex]\[ Q' = \][/tex]
[tex]\[ \square \][/tex]

[tex]\[ R' = \][/tex]
[tex]\[ \square \][/tex]

[tex]\[ S' = \][/tex]
[tex]\[ \square \][/tex]



Answer :

To find the coordinates of the vertices of triangle QRS after a translation by the vector [tex]\( T_{(-7.6, 4.3)} \)[/tex], we need to apply the translation to each vertex.

The translation vector [tex]\( T_{(-7.6, 4.3)} \)[/tex] tells us to shift the coordinates of each vertex by -7.6 units in the x-direction and 4.3 units in the y-direction.

Let's go through each vertex one by one:

1. Vertex Q: (8, -6)
- To translate Q by [tex]\((-7.6, 4.3)\)[/tex], we add -7.6 to the x-coordinate and 4.3 to the y-coordinate of Q:
[tex]\[ Q^{\prime} = (8 + (-7.6), -6 + 4.3) \][/tex]
Simplifying this, we get:
[tex]\[ Q^{\prime} = (0.4, -1.7) \][/tex]

2. Vertex R: (10, 5)
- To translate R by [tex]\((-7.6, 4.3)\)[/tex], we add -7.6 to the x-coordinate and 4.3 to the y-coordinate of R:
[tex]\[ R^{\prime} = (10 + (-7.6), 5 + 4.3) \][/tex]
Simplifying this, we get:
[tex]\[ R^{\prime} = (2.4, 9.3) \][/tex]

3. Vertex S: (-3, 3)
- To translate S by [tex]\((-7.6, 4.3)\)[/tex], we add -7.6 to the x-coordinate and 4.3 to the y-coordinate of S:
[tex]\[ S^{\prime} = (-3 + (-7.6), 3 + 4.3) \][/tex]
Simplifying this, we get:
[tex]\[ S^{\prime} = (-10.6, 7.3) \][/tex]

Therefore, the coordinates of the vertices of the image of triangle QRS after the translation are:
[tex]\[ Q^{\prime} = (0.4, -1.7) \][/tex]
[tex]\[ R^{\prime} = (2.4, 9.3) \][/tex]
[tex]\[ S^{\prime} = (-10.6, 7.3) \][/tex]