Let [tex]$f(x)=\tan ^{-1} x$[/tex]. Then the domain of [tex]$f(x)$[/tex] is all real numbers, and the range is [tex]$(-\frac{\pi}{2}, \frac{\pi}{2})$[/tex].

A. True
B. False



Answer :

Let's analyze the given problem step-by-step to evaluate the truthfulness of the statement.

1. Function Definition:
- The function [tex]\( f(x) = \tan^{-1}(x) \)[/tex] is the inverse of the tangent function. This is commonly denoted as the arctangent function.

2. Domain of [tex]\( f(x) \)[/tex]:
- The arctangent function [tex]\( \tan^{-1}(x) \)[/tex] takes any real number as its input. Hence, the domain of [tex]\( f(x) \)[/tex] is all real numbers, [tex]\((-\infty, \infty)\)[/tex].

3. Range of [tex]\( f(x) \)[/tex]:
- The arctangent function [tex]\( \tan^{-1}(x) \)[/tex] outputs values that lie within a specific interval.
- For typical usage, the range of [tex]\( \tan^{-1}(x) \)[/tex] is [tex]\( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \)[/tex]. This is the standard range for the principal values of the arctangent function.

4. Given Range in the Statement:
- The statement claims that the range is [tex]\([0, \pi]\)[/tex]. However, this is incorrect.
- The correct standard range for the arctangent function is [tex]\(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)[/tex], and definitely not [tex]\([0, \pi]\)[/tex].

Based on this understanding, the statement that the range of [tex]\( f(x) = \tan^{-1}(x) \)[/tex] is [tex]\([0, \pi]\)[/tex] is false.

Thus, the correct answer is:

B. False