Answer :
To determine the electric potential at the point, we can use the formula that relates electric potential (V), potential energy (U), and charge (q):
[tex]\[ V = \frac{U}{q} \][/tex]
Given:
- Charge, [tex]\( q = 6.7 \times 10^{-15} \)[/tex] coulombs
- Potential energy, [tex]\( U = 5.6 \times 10^{-12} \)[/tex] joules
Plugging these values into the equation, we get:
[tex]\[ V = \frac{5.6 \times 10^{-12} \text{ joules}}{6.7 \times 10^{-15} \text{ coulombs}} \][/tex]
Simplifying the expression:
[tex]\[ V = \frac{5.6 \times 10^{-12}}{6.7 \times 10^{-15}} \][/tex]
This division results in:
[tex]\[ V \approx 835.8208955223881 \text{ volts} \][/tex]
Given the options:
A. [tex]\( 2.3 \times 10^2 \)[/tex] volts
B. [tex]\( 4.7 \times 10^2 \)[/tex] volts
C. [tex]\( 8.4 \times 10^2 \)[/tex] volts
D. [tex]\( 9.2 \times 10^2 \)[/tex] volts
The value [tex]\( 835.8208955223881 \)[/tex] volts corresponds approximately to option:
C. [tex]\( 8.4 \times 10^2 \)[/tex] volts
Therefore, the correct answer is:
C. [tex]\( 8.4 \times 10^2 \)[/tex] volts
[tex]\[ V = \frac{U}{q} \][/tex]
Given:
- Charge, [tex]\( q = 6.7 \times 10^{-15} \)[/tex] coulombs
- Potential energy, [tex]\( U = 5.6 \times 10^{-12} \)[/tex] joules
Plugging these values into the equation, we get:
[tex]\[ V = \frac{5.6 \times 10^{-12} \text{ joules}}{6.7 \times 10^{-15} \text{ coulombs}} \][/tex]
Simplifying the expression:
[tex]\[ V = \frac{5.6 \times 10^{-12}}{6.7 \times 10^{-15}} \][/tex]
This division results in:
[tex]\[ V \approx 835.8208955223881 \text{ volts} \][/tex]
Given the options:
A. [tex]\( 2.3 \times 10^2 \)[/tex] volts
B. [tex]\( 4.7 \times 10^2 \)[/tex] volts
C. [tex]\( 8.4 \times 10^2 \)[/tex] volts
D. [tex]\( 9.2 \times 10^2 \)[/tex] volts
The value [tex]\( 835.8208955223881 \)[/tex] volts corresponds approximately to option:
C. [tex]\( 8.4 \times 10^2 \)[/tex] volts
Therefore, the correct answer is:
C. [tex]\( 8.4 \times 10^2 \)[/tex] volts