Select the correct answer.

A charge [tex]\( q \)[/tex] of [tex]\( 7.3 \times 10^{-15} \)[/tex] coulombs moves from point [tex]\( A \)[/tex] to point [tex]\( B \)[/tex] in an electric field. If the potential energy of the charge at point [tex]\( A \)[/tex] is [tex]\( 3.5 \times 10^{-12} \)[/tex] joules and that at point [tex]\( B \)[/tex] is [tex]\( 1.3 \times 10^{-12} \)[/tex] joules, what is the potential difference between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]?

A. [tex]\( 1.3 \times 10^2 \)[/tex] volts
B. [tex]\( 3.0 \times 10^2 \)[/tex] volts
C. [tex]\( 3.5 \times 10^3 \)[/tex] volts
D. [tex]\( 6.8 \times 10^3 \)[/tex] volts



Answer :

To solve for the potential difference between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we need to follow these steps:

1. Identify the given values:
- The charge [tex]\( q = 7.3 \times 10^{-15} \)[/tex] coulombs.
- The potential energy at point [tex]\( A \)[/tex], [tex]\( U_A = 3.5 \times 10^{-12} \)[/tex] joules.
- The potential energy at point [tex]\( B \)[/tex], [tex]\( U_B = 1.3 \times 10^{-12} \)[/tex] joules.

2. Calculate the change in potential energy [tex]\( \Delta U \)[/tex]:
[tex]\[ \Delta U = U_A - U_B \][/tex]
Substituting the given values:
[tex]\[ \Delta U = 3.5 \times 10^{-12} \, \text{J} - 1.3 \times 10^{-12} \, \text{J} = 2.2 \times 10^{-12} \, \text{J} \][/tex]

3. Calculate the potential difference [tex]\( \Delta V \)[/tex]:
The potential difference [tex]\( \Delta V \)[/tex] is given by the formula:
[tex]\[ \Delta V = \frac{\Delta U}{q} \][/tex]
Substituting the values for [tex]\( \Delta U \)[/tex] and [tex]\( q \)[/tex]:
[tex]\[ \Delta V = \frac{2.2 \times 10^{-12} \, \text{J}}{7.3 \times 10^{-15} \, \text{C}} \][/tex]

4. Simplify the expression for [tex]\( \Delta V \)[/tex]:
[tex]\[ \Delta V = 3.0 \times 10^2 \, \text{V} \][/tex]

Therefore, the potential difference between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( 3.0 \times 10^2 \)[/tex] volts.

Hence, the correct answer is:
[tex]\[ \boxed{3.0 \times 10^2 \, \text{V}} \][/tex]

Or in terms of the given multiple choice options, the correct answer is:
[tex]\[ \boxed{\text{B. } 3.0 \times 10^2 \text{ volts}} \][/tex]