What is the distance between the points located at [tex]\((-7, -18)\)[/tex] and [tex]\((-7, 25)\)[/tex]?

A. 7 units
B. 43 units
C. -43 units
D. -7 units



Answer :

Let's determine the distance between the points [tex]\((-7, -18)\)[/tex] and [tex]\((-7, 25)\)[/tex].

To do this, we use the distance formula, which is given by:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Given the points [tex]\((-7, -18)\)[/tex] and [tex]\((-7, 25)\)[/tex], we can label them as:
[tex]\[ (x_1, y_1) = (-7, -18) \][/tex]
[tex]\[ (x_2, y_2) = (-7, 25) \][/tex]

First, calculate the difference in the coordinates:
[tex]\[ x_2 - x_1 = -7 - (-7) = -7 + 7 = 0 \][/tex]
[tex]\[ y_2 - y_1 = 25 - (-18) = 25 + 18 = 43 \][/tex]

Now, substitute these differences into the distance formula:
[tex]\[ d = \sqrt{(0)^2 + (43)^2} = \sqrt{0 + 1849} = \sqrt{1849} \][/tex]

Taking the square root of 1849 gives us:
[tex]\[ d = 43 \][/tex]

Thus, the distance between the points [tex]\((-7, -18)\)[/tex] and [tex]\((-7, 25)\)[/tex] is [tex]\(43\)[/tex] units. Therefore, the correct answer is:

43 units.