Rectangle EFGH is translated according to the rule [tex]\( T_{-5,9}(x, y) \)[/tex]. If the coordinates of the pre-image of point H are [tex]\((2, -3)\)[/tex], what are the coordinates of [tex]\( H^{\prime} \)[/tex]?

A. [tex]\((7, -8)\)[/tex]
B. [tex]\((-7, 6)\)[/tex]
C. [tex]\((3, -12)\)[/tex]
D. [tex]\((2, 1)\)[/tex]



Answer :

To find the coordinates of [tex]\( H' \)[/tex] after a translation, we need to apply the translation rule [tex]\( T_{-5,9}(x, y) \)[/tex] to the original coordinates of point [tex]\( H \)[/tex]. Here, the pre-image coordinates of point [tex]\( H \)[/tex] are given as [tex]\((2, -3)\)[/tex].

The translation rule [tex]\( T_{-5,9}(x, y) \)[/tex] means that we will translate the point by moving it [tex]\(-5\)[/tex] units in the [tex]\( x \)[/tex]-direction and [tex]\(9\)[/tex] units in the [tex]\( y \)[/tex]-direction.

Let's break down the translation step-by-step:

1. Starting coordinates: The pre-image point [tex]\( H \)[/tex] has coordinates [tex]\((2, -3)\)[/tex].

2. Translation in the [tex]\( x \)[/tex]-direction:
- The original [tex]\( x \)[/tex]-coordinate is [tex]\(2\)[/tex].
- According to the rule, we need to subtract [tex]\(5\)[/tex] from the [tex]\( x \)[/tex]-coordinate.
- So, [tex]\( 2 - 5 = -3 \)[/tex].

3. Translation in the [tex]\( y \)[/tex]-direction:
- The original [tex]\( y \)[/tex]-coordinate is [tex]\(-3\)[/tex].
- According to the rule, we need to add [tex]\(9\)[/tex] to the [tex]\( y \)[/tex]-coordinate.
- So, [tex]\(-3 + 9 = 6\)[/tex].

Hence, the new coordinates of [tex]\( H' \)[/tex] are [tex]\( (-3, 6) \)[/tex].

Therefore, the correct answer is [tex]\( (-3, 6) \)[/tex].