1. Find the product of [tex]\((Y-3)\)[/tex] and [tex]\((Y+3)\)[/tex].

A. [tex]\(Y^4\)[/tex]
B. [tex]\(Y^2 + 9\)[/tex]
C. [tex]\(Y = 4\)[/tex]
D. [tex]\(Y + 4\)[/tex]



Answer :

Certainly! Let's find the product of the expressions [tex]\( (Y-3) \)[/tex] and [tex]\( (Y+3) \)[/tex].

### Step-by-Step Solution

1. Write down the expressions to be multiplied:
[tex]\[ (Y-3) \quad \text{and} \quad (Y+3) \][/tex]

2. Use the distributive property (also known as the FOIL method for binomials) to multiply these two expressions:
[tex]\[ (Y-3)(Y+3) \][/tex]

3. Applying the distributive property:
[tex]\[ (Y-3)(Y+3) = Y(Y+3) - 3(Y+3) \][/tex]

4. Multiply each term inside the parentheses:
[tex]\[ Y(Y+3) = Y^2 + 3Y \][/tex]
[tex]\[ -3(Y+3) = -3Y - 9 \][/tex]

5. Combine these results:
[tex]\[ (Y^2 + 3Y) + (-3Y - 9) \][/tex]

6. Simplify the expression by combining like terms:
[tex]\[ Y^2 + 3Y - 3Y - 9 = Y^2 - 9 \][/tex]

Therefore, the product of [tex]\( (Y-3) \)[/tex] and [tex]\( (Y+3) \)[/tex] simplifies to [tex]\( Y^2 - 9 \)[/tex].

### Answer:
The product of [tex]\( (Y-3) \)[/tex] and [tex]\( (Y+3) \)[/tex] is:
[tex]\[ Y^2 - 9 \][/tex]

Given the options provided in the question:
- (a) [tex]$Y^4$[/tex]
- (b) [tex]$Y^2+9$[/tex]
- (i) [tex]$Y=(4$[/tex]
- (ii) [tex]$Y+4$[/tex]

None of these options match our result. The correct simplified form is [tex]\( Y^2 - 9 \)[/tex]. Hence, none of the options provided (a), (b), (i), or (ii) are correct as per the standard simplification of the given problem.