What is the solution to the system of equations?

[tex]\[
\begin{array}{l}
y = 2x - 3.5 \\
x - 2y = -14
\end{array}
\][/tex]

A. [tex]$(-7, 3.5)$[/tex]
B. [tex]$(3.5, -7)$[/tex]
C. [tex]$(7, 10.5)$[/tex]
D. [tex]$(10.5, 7)$[/tex]



Answer :

To solve the system of equations:

[tex]\[ \begin{align*} 1) \quad y &= 2x - 3.5 \\ 2) \quad x - 2y &= -14 \end{align*} \][/tex]

we need to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations simultaneously.

### Step 1: Substitute [tex]\( y \)[/tex] from Equation 1 into Equation 2
Given:
[tex]\[ y = 2x - 3.5 \][/tex]

Substitute [tex]\( y \)[/tex] in Equation 2:
[tex]\[ x - 2(2x - 3.5) = -14 \][/tex]

### Step 2: Simplify the resulting equation
[tex]\[ x - 2(2x - 3.5) = -14 \][/tex]
[tex]\[ x - 2 \cdot 2x + 2 \cdot 3.5 = -14 \][/tex]
[tex]\[ x - 4x + 7 = -14 \][/tex]

Combine like terms:
[tex]\[ -3x + 7 = -14 \][/tex]

### Step 3: Solve for [tex]\( x \)[/tex]
[tex]\[ -3x + 7 = -14 \][/tex]
Subtract 7 from both sides:
[tex]\[ -3x = -14 - 7 \][/tex]
[tex]\[ -3x = -21 \][/tex]
Divide both sides by -3:
[tex]\[ x = 7 \][/tex]

### Step 4: Substitute [tex]\( x \)[/tex] back into Equation 1 to find [tex]\( y \)[/tex]
Using [tex]\( x = 7 \)[/tex] in the equation [tex]\( y = 2x - 3.5 \)[/tex]:
[tex]\[ y = 2(7) - 3.5 \][/tex]
[tex]\[ y = 14 - 3.5 \][/tex]
[tex]\[ y = 10.5 \][/tex]

### Conclusion
The solution to the system of equations is:
[tex]\[ (x, y) = (7, 10.5) \][/tex]

Therefore, the correct choice is:
[tex]\[ (7, 10.5) \][/tex]