(ii) If [tex]$\sqrt{2} = 1.414$[/tex] and [tex]$\sqrt{3} = 1.732$[/tex], then evaluate [tex]$\frac{\sqrt{2} - 1}{\sqrt{2} + 1} + \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$[/tex] correct to three decimal places.



Answer :

To evaluate the expression [tex]\(\frac{\sqrt{2} - 1}{\sqrt{2} + 1} + \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\)[/tex] correct to three decimal places, follow these detailed steps:

1. Assign the approximate values:
[tex]\[ \sqrt{2} = 1.414 \][/tex]
[tex]\[ \sqrt{3} = 1.732 \][/tex]

2. Evaluate the first fraction [tex]\(\frac{\sqrt{2} - 1}{\sqrt{2} + 1}\)[/tex]:
- Calculate the numerator:
[tex]\[ \sqrt{2} - 1 = 1.414 - 1 = 0.414 \][/tex]
- Calculate the denominator:
[tex]\[ \sqrt{2} + 1 = 1.414 + 1 = 2.414 \][/tex]
- Compute the fraction:
[tex]\[ \frac{0.414}{2.414} \approx 0.171 \][/tex]

3. Evaluate the second fraction [tex]\(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\)[/tex]:
- Calculate the numerator:
[tex]\[ \sqrt{3} - \sqrt{2} = 1.732 - 1.414 = 0.318 \][/tex]
- Calculate the denominator:
[tex]\[ \sqrt{3} + \sqrt{2} = 1.732 + 1.414 = 3.146 \][/tex]
- Compute the fraction:
[tex]\[ \frac{0.318}{3.146} \approx 0.101 \][/tex]

4. Add the two fractions together:
[tex]\[ 0.171 + 0.101 = 0.272 \][/tex]

5. Round the result to three decimal places:
[tex]\[ \boxed{0.273} \][/tex]

Therefore, the value of the expression [tex]\(\frac{\sqrt{2} - 1}{\sqrt{2} + 1} + \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\)[/tex] correct to three decimal places is [tex]\(0.273\)[/tex].