Solve the equation.

[tex] -(2x - 3) - (4x - 6) + 4 = -4(x - 1) - (5x + 3) + 3 [/tex]

Select the correct choice below and, if necessary, fill in the answer box.

A. The solution is [tex] \square [/tex].



Answer :

Let's solve the equation step by step:

Given equation:
[tex]\[ -(2x - 3) - (4x - 6) + 4 = -4(x - 1) - (5x + 3) + 3 \][/tex]

Step 1: Simplify the left side of the equation
[tex]\[ -(2x - 3) - (4x - 6) + 4 \][/tex]
First, distribute the negative sign:
[tex]\[ -2x + 3 - 4x + 6 + 4 \][/tex]
Combine like terms:
[tex]\[ -2x - 4x + 3 + 6 + 4 = -6x + 13 \][/tex]

Step 2: Simplify the right side of the equation
[tex]\[ -4(x - 1) - (5x + 3) + 3 \][/tex]
Distribute the negative signs:
[tex]\[ -4x + 4 - 5x - 3 + 3 \][/tex]
Combine like terms:
[tex]\[ -4x - 5x + 4 - 3 + 3 = -9x + 4 \][/tex]

Now, our simplified equation is:
[tex]\[ -6x + 13 = -9x + 4 \][/tex]

Step 3: Solve for [tex]\(x\)[/tex]
Start by getting all [tex]\(x\)[/tex]-terms on one side of the equation. Add [tex]\(9x\)[/tex] to both sides:
[tex]\[ -6x + 9x + 13 = 4 \][/tex]
Combine like terms:
[tex]\[ 3x + 13 = 4 \][/tex]

Next, isolate the [tex]\(x\)[/tex]-term by subtracting 13 from both sides:
[tex]\[ 3x = 4 - 13 \][/tex]
[tex]\[ 3x = -9 \][/tex]

Finally, solve for [tex]\(x\)[/tex] by dividing both sides by 3:
[tex]\[ x = \frac{-9}{3} \][/tex]
[tex]\[ x = -3 \][/tex]

So, the solution is:
[tex]\[ \boxed{-3} \][/tex]