Answer :

To check whether the given equation is true or false:
[tex]\[ 3 x^{-3} = \frac{1}{3 x^3} \][/tex]

Let's rewrite both sides of the equation in terms of [tex]\(x\)[/tex].

### Left-hand side (LHS):
[tex]\[ LHS = 3 x^{-3} \][/tex]

### Right-hand side (RHS):
[tex]\[ RHS = \frac{1}{3 x^3} \][/tex]

We need to determine if [tex]\(LHS\)[/tex] and [tex]\(RHS\)[/tex] are equal.

### Simplifying LHS:
[tex]\[ 3 x^{-3} = 3 \cdot \frac{1}{x^3} = \frac{3}{x^3} \][/tex]

### Simplifying RHS:
[tex]\[ \frac{1}{3 x^3} \][/tex]

Rewrite it as a single fraction:
[tex]\[ \frac{1}{3 x^3} = \frac{1}{3} \cdot \frac{1}{x^3} = \frac{1}{3x^3} \][/tex]

Now, compare the simplified forms of the LHS and RHS:
[tex]\[ \frac{3}{x^3} \quad \text{and} \quad \frac{1}{3x^3} \][/tex]

Clearly, these two expressions are not equal:
[tex]\[ \frac{3}{x^3} \ne \frac{1}{3 x^3} \][/tex]

Therefore, the equation:
[tex]\[ 3 x^{-3} = \frac{1}{3 x^3} \][/tex]

is False.