Complete the equation describing the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

[tex]\[
\begin{tabular}{c|r}
$x$ & $y$ \\
\hline 0 & -6 \\
1 & 1 \\
2 & 8 \\
3 & 15 \\
4 & 22 \\
5 & 29 \\
\end{tabular}
\][/tex]

[tex]\[ y = [?] x + \square \][/tex]



Answer :

To describe the relationship between the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex] from the given table, we can derive a linear equation of the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.

The table of data points is:
[tex]\[ \begin{array}{c|r} x & y \\ \hline 0 & -6 \\ 1 & 1 \\ 2 & 8 \\ 3 & 15 \\ 4 & 22 \\ 5 & 29 \\ \end{array} \][/tex]

Based on the calculations, the slope ([tex]\( m \)[/tex]) and intercept ([tex]\( b \)[/tex]) for the linear relationship are:

[tex]\[ m = 7 \quad \text{and} \quad b = -6 \][/tex]

Thus, the complete linear equation that describes the given relationship is:

[tex]\[ y = 7x - 6 \][/tex]

So, the final equation for [tex]\( y \)[/tex] is:
[tex]\[ y = 7x + (-6) \][/tex]

In the standard form, it is written as:
[tex]\[ y = 7x - 6 \][/tex]