Simplify, leaving the answer in positive exponential form.

[tex]\[
\frac{\left(3 x y^{-2}\right)^2}{2 x^{-3} y^3}
\][/tex]

A. [tex]\(\frac{9 y}{2 x}\)[/tex]

B. [tex]\(\frac{9 x^5}{2}\)[/tex]

C. [tex]\(\frac{9 x^5}{2 y^7}\)[/tex]

D. [tex]\(\frac{9 x^6}{2 y^{12}}\)[/tex]

E. None of the above



Answer :

Sure, let's simplify the given expression step-by-step. We need to simplify the expression:

[tex]\[ \frac{\left(3 x y^{-2}\right)^2}{2 x^{-3} y^3} \][/tex]

1. Simplify the numerator:
[tex]\[ \left(3 x y^{-2}\right)^2 \][/tex]
When we square a term, we square each factor inside the parentheses:
[tex]\[ (3 x y^{-2})^2 = 3^2 \cdot x^2 \cdot (y^{-2})^2 = 9 \cdot x^2 \cdot y^{-4} \][/tex]
So the numerator simplifies to:
[tex]\[ 9 x^2 y^{-4} \][/tex]

2. Simplify the denominator:
[tex]\[ 2 x^{-3} y^3 \][/tex]
This expression is already simplified.

3. Combine the results:
We need to divide the simplified numerator by the simplified denominator:
[tex]\[ \frac{9 x^2 y^{-4}}{2 x^{-3} y^3} \][/tex]

4. Simplify the division:
The division of the terms involves subtracting the exponents for each corresponding variable:
[tex]\[ \frac{9 x^2}{2 x^{-3}} \cdot \frac{y^{-4}}{y^3} = \frac{9 x^{2 - (-3)}}{2} \cdot y^{-4 - 3} \][/tex]
Simplifying the exponents, we get:
[tex]\[ \frac{9 x^{2 + 3}}{2} \cdot y^{-7} = \frac{9 x^5}{2} \cdot y^{-7} \][/tex]

5. Rewriting with positive exponents:
Negative exponents can be rewritten as positive exponents by moving the term to the denominator:
[tex]\[ \frac{9 x^5}{2 y^7} \][/tex]

Thus, the simplified expression is:

[tex]\[ \boxed{\frac{9 x^5}{2 y^7}} \][/tex]