Complete the equation describing how [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are related.

[tex]\[
\begin{array}{|c|c|c|}
\hline
x & y^x & y \\
\hline
-3 & -5 & \\
\hline
-2 & -1 & y = [?]x + \\
\hline
-1 & 3 & \\
\hline
0 & 7 & \\
\hline
1 & 11 & \\
\hline
2 & 15 & \\
\hline
\end{array}
\][/tex]



Answer :

To find the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we need to determine the linear relationship: [tex]\( y = mx + c \)[/tex].

Based on the given [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values, we have:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & -5 \\ \hline -2 & -1 \\ \hline -1 & 3 \\ \hline 0 & 7 \\ \hline 1 & 11 \\ \hline 2 & 15 \\ \hline \end{array} \][/tex]

First, determine the slope [tex]\( m \)[/tex] and the intercept [tex]\( c \)[/tex]. We have calculated that:

- The slope [tex]\( m \)[/tex] is approximately [tex]\( 4.000000000000002 \)[/tex].
- The intercept [tex]\( c \)[/tex] is [tex]\( 7.0 \)[/tex].

Therefore, the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:

[tex]\[ y = 4.000000000000002x + 7.0 \][/tex]

Now plugging these values into the table, we get:

[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline -3 & -5 \\ \hline -2 & -1 \\ \hline -1 & 3 \\ \hline 0 & 7 \\ \hline 1 & 11 \\ \hline 2 & 15 \\ \hline \end{tabular} \][/tex]

So, the final answer for the equation describing the relationship is:

[tex]\[ y = 4x + 7 \][/tex]

Thus, where the table states " [tex]\( y = [?] x + \)[/tex] ", the complete relationship filled in should be:

[tex]\[ y = 4x + 7 \][/tex]