Answer :
To find the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we need to determine the linear relationship: [tex]\( y = mx + c \)[/tex].
Based on the given [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values, we have:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & -5 \\ \hline -2 & -1 \\ \hline -1 & 3 \\ \hline 0 & 7 \\ \hline 1 & 11 \\ \hline 2 & 15 \\ \hline \end{array} \][/tex]
First, determine the slope [tex]\( m \)[/tex] and the intercept [tex]\( c \)[/tex]. We have calculated that:
- The slope [tex]\( m \)[/tex] is approximately [tex]\( 4.000000000000002 \)[/tex].
- The intercept [tex]\( c \)[/tex] is [tex]\( 7.0 \)[/tex].
Therefore, the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:
[tex]\[ y = 4.000000000000002x + 7.0 \][/tex]
Now plugging these values into the table, we get:
[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline -3 & -5 \\ \hline -2 & -1 \\ \hline -1 & 3 \\ \hline 0 & 7 \\ \hline 1 & 11 \\ \hline 2 & 15 \\ \hline \end{tabular} \][/tex]
So, the final answer for the equation describing the relationship is:
[tex]\[ y = 4x + 7 \][/tex]
Thus, where the table states " [tex]\( y = [?] x + \)[/tex] ", the complete relationship filled in should be:
[tex]\[ y = 4x + 7 \][/tex]
Based on the given [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values, we have:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & -5 \\ \hline -2 & -1 \\ \hline -1 & 3 \\ \hline 0 & 7 \\ \hline 1 & 11 \\ \hline 2 & 15 \\ \hline \end{array} \][/tex]
First, determine the slope [tex]\( m \)[/tex] and the intercept [tex]\( c \)[/tex]. We have calculated that:
- The slope [tex]\( m \)[/tex] is approximately [tex]\( 4.000000000000002 \)[/tex].
- The intercept [tex]\( c \)[/tex] is [tex]\( 7.0 \)[/tex].
Therefore, the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:
[tex]\[ y = 4.000000000000002x + 7.0 \][/tex]
Now plugging these values into the table, we get:
[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline -3 & -5 \\ \hline -2 & -1 \\ \hline -1 & 3 \\ \hline 0 & 7 \\ \hline 1 & 11 \\ \hline 2 & 15 \\ \hline \end{tabular} \][/tex]
So, the final answer for the equation describing the relationship is:
[tex]\[ y = 4x + 7 \][/tex]
Thus, where the table states " [tex]\( y = [?] x + \)[/tex] ", the complete relationship filled in should be:
[tex]\[ y = 4x + 7 \][/tex]