Arrange the following fractions in decreasing order:

[tex]\[
\frac{1}{10} \cdot \frac{3}{7}, \frac{1}{4} \cdot \frac{5}{14}
\][/tex]



Answer :

Alright, let's solve the problem step-by-step.

### Step 1: Calculate Each Fraction

First, we need to multiply the fractions individually:

1. For the first expression:
[tex]\[ \frac{1}{10} \cdot \frac{3}{7} = \frac{1 \times 3}{10 \times 7} = \frac{3}{70} \][/tex]

2. For the second expression:
[tex]\[ \frac{1}{4} \cdot \frac{5}{14} = \frac{1 \times 5}{4 \times 14} = \frac{5}{56} \][/tex]

### Step 2: Convert Fractions to Decimal Form for Easier Comparison

Now, let's convert these fractions into decimal form to facilitate comparison:

1. For [tex]\(\frac{3}{70}\)[/tex]:
[tex]\[ \frac{3}{70} \approx 0.042857142857142864 \][/tex]

2. For [tex]\(\frac{5}{56}\)[/tex]:
[tex]\[ \frac{5}{56} \approx 0.08928571428571429 \][/tex]

### Step 3: Compare and Arrange the Decimals

Next, we will compare the decimal values and arrange them in decreasing order:

- [tex]\(\frac{5}{56} \approx 0.08928571428571429\)[/tex]
- [tex]\(\frac{3}{70} \approx 0.042857142857142864\)[/tex]

Clearly, [tex]\(0.08928571428571429\)[/tex] is greater than [tex]\(0.042857142857142864\)[/tex].

### Step 4: Write the Final Answer in Decreasing Order

Thus, the required arrangement of the fractions in decreasing order is:

[tex]\[ \frac{1}{4} \cdot \frac{5}{14}, \quad \frac{1}{10} \cdot \frac{3}{7} \][/tex]

So, the fractions in decreasing order are:
[tex]\[ \frac{5}{56}, \quad \frac{3}{70} \][/tex]
This is the correct arrangement of the given fractions in decreasing order.