Answered

Combine like terms to create an equivalent expression. Enter coefficients as simplified proper or improper fractions or integers.

[tex]\[ -\frac{1}{2}(-3y + 10) \][/tex]



Answer :

To combine like terms and create an equivalent expression for

[tex]\[ -\frac{1}{2}(-3 y + 10) \][/tex]

we will perform the following steps:

### Step 1: Distribute the Coefficient
Distribute the [tex]\(-\frac{1}{2}\)[/tex] across each term inside the parentheses [tex]\(-3y + 10\)[/tex].

### Step 2: Multiply each term
Let's perform the multiplication:

1. Multiply [tex]\(-\frac{1}{2}\)[/tex] by [tex]\(-3y\)[/tex]:
[tex]\[ -\frac{1}{2} \cdot -3y = \frac{3}{2}y \][/tex]

2. Multiply [tex]\(-\frac{1}{2}\)[/tex] by [tex]\(10\)[/tex]:
[tex]\[ -\frac{1}{2} \cdot 10 = -5 \][/tex]

### Step 3: Combine the results
Combine the two results to form the equivalent expression:

[tex]\[ \frac{3}{2}y - 5 \][/tex]

Therefore, the equivalent expression after combining like terms is:

[tex]\[ 1.5y - 5.0 \][/tex]