Instructions: For the given piecewise function, evaluate for the specified value of [tex]x[/tex].

[tex]\[
f(x)=\begin{cases}
x+4 & \text{if } x\ \textless \ -1 \\
x & \text{if } -1 \leq x \leq 3 \\
x+1 & \text{if } x\ \textgreater \ 3
\end{cases}
\][/tex]

Evaluate when [tex]x=-1[/tex].

[tex]\[
f(-1)=
\][/tex]
[tex]\boxed{ }[/tex]



Answer :

To evaluate the piecewise function [tex]\( f(x) \)[/tex] at [tex]\( x = -1 \)[/tex], follow the steps below:

1. Identify which part of the piecewise function applies to [tex]\( x = -1 \)[/tex].
[tex]\[ f(x) = \left\{ \begin{array}{l} x + 4, \quad x < -1 \\ x, \quad -1 \leq x \leq 3 \\ x + 1, \quad x > 3 \end{array} \right. \][/tex]

2. Determine the condition that [tex]\( x = -1 \)[/tex] meets:
- The first condition is [tex]\( x < -1 \)[/tex]: Here, [tex]\( x = -1 \)[/tex] does not satisfy this condition because [tex]\(-1\)[/tex] is not less than [tex]\(-1\)[/tex].
- The second condition is [tex]\( -1 \leq x \leq 3 \)[/tex]: Here, [tex]\( x = -1 \)[/tex] satisfies this condition because [tex]\(-1\)[/tex] is equal to [tex]\(-1\)[/tex], which is within the interval [tex]\([-1, 3]\)[/tex].
- The third condition is [tex]\( x > 3 \)[/tex]: Here, [tex]\( x = -1 \)[/tex] does not satisfy this condition because [tex]\(-1\)[/tex] is not greater than [tex]\( 3 \)[/tex].

3. Since [tex]\( x = -1 \)[/tex] satisfies the second condition [tex]\( -1 \leq x \leq 3 \)[/tex], the corresponding expression for [tex]\( f(x) \)[/tex] is [tex]\( x \)[/tex].

4. Substitute [tex]\( x = -1 \)[/tex] into the expression from the selected condition:
[tex]\[ f(-1) = -1 \][/tex]

Thus, [tex]\( f(-1) = -1 \)[/tex].

[tex]\[ \boxed{-1} \][/tex]