Answer :

To simplify the expression [tex]\(\left(3 w^5 x^{-4}\right)^{-3}\)[/tex] and write the answer using only positive exponents, follow these steps:

1. Apply the exponent to each factor inside the parentheses:
[tex]\[ (3 w^5 x^{-4})^{-3} = 3^{-3} \cdot (w^5)^{-3} \cdot (x^{-4})^{-3} \][/tex]

2. Simplify each term individually:
- For [tex]\(3^{-3}\)[/tex]:
[tex]\[ 3^{-3} = \frac{1}{3^3} = \frac{1}{27} \][/tex]

- For [tex]\((w^5)^{-3}\)[/tex]:
[tex]\[ (w^5)^{-3} = w^{5 \cdot (-3)} = w^{-15} \][/tex]

- For [tex]\((x^{-4})^{-3}\)[/tex]:
[tex]\[ (x^{-4})^{-3} = x^{-4 \cdot (-3)} = x^{12} \][/tex]

3. Combine all the simplified terms:
[tex]\[ 3^{-3} \cdot w^{-15} \cdot x^{12} = \frac{1}{27} \cdot w^{-15} \cdot x^{12} \][/tex]

4. Write the final answer, ensuring all exponents are positive:
[tex]\[ \frac{1}{27} w^{-15} x^{12} = \frac{x^{12}}{27 w^{15}} \][/tex]

Thus, the simplified expression is:
[tex]\[ \frac{x^{12}}{27 w^{15}} \][/tex]