Solve for [tex]$x$[/tex] and [tex]$y$[/tex]:

[tex]\[
\begin{array}{l}
y = 2 + 7x \\
-2x + 6y = 92
\end{array}
\][/tex]

A. [tex]$x = -2, y = -12$[/tex]

B. [tex]$x = -4, y = 14$[/tex]

C. [tex]$x = 16, y = 2$[/tex]

D. [tex]$x = 2, y = 16$[/tex]



Answer :

Let’s solve the given system of equations step-by-step.

We start with two equations:
[tex]\[ \begin{array}{l} y = 2 + 7x \quad (1) \\ -2x + 6y = 92 \quad (2) \end{array} \][/tex]

First, we'll use equation (1) to express [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex]:
[tex]\[ y = 2 + 7x \][/tex]

Next, we'll substitute this expression for [tex]\(y\)[/tex] into equation (2):
[tex]\[ -2x + 6(2 + 7x) = 92 \][/tex]

Expanding the terms inside the parentheses:
[tex]\[ -2x + 12 + 42x = 92 \][/tex]

Combining like terms:
[tex]\[ -2x + 42x + 12 = 92 \][/tex]

Simplifying the left-hand side:
[tex]\[ 40x + 12 = 92 \][/tex]

Next, we isolate [tex]\(x\)[/tex] by subtracting 12 from both sides:
[tex]\[ 40x = 80 \][/tex]

Now divide both sides by 40:
[tex]\[ x = 2 \][/tex]

Having found [tex]\(x\)[/tex], we substitute it back into equation (1) to find [tex]\(y\)[/tex]:
[tex]\[ y = 2 + 7(2) \][/tex]

Calculating inside the parentheses:
[tex]\[ y = 2 + 14 \][/tex]

So,
[tex]\[ y = 16 \][/tex]

Thus, the solution to the system of equations is [tex]\(x = 2\)[/tex] and [tex]\(y = 16\)[/tex].

Next, we check which of the given options matches this solution:
[tex]\[ \begin{array}{l} x = -2, \, y = -12 \\ x = -4, \, y = 14 \\ x = 16, \, y = 2 \\ x = 2, \, y = 16 \\ \end{array} \][/tex]

The matching option is:
[tex]\[ x = 2, \, y = 16 \][/tex]

Therefore, the solution to the system [tex]\((x, y)\)[/tex] that matches the given options is:
[tex]\[ (x, y) = (2, 16) \][/tex]