Answer :
To solve the system of equations by the substitution method, we must substitute one equation into the other to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Here are the steps:
1. Given Equations:
[tex]\[ (1) \quad x = 5y + 2 \][/tex]
[tex]\[ (2) \quad x = 9y - 10 \][/tex]
2. Equate the expressions for [tex]\( x \)[/tex] from both equations:
[tex]\[ 5y + 2 = 9y - 10 \][/tex]
3. Solve for [tex]\( y \)[/tex]:
- Move the terms involving [tex]\( y \)[/tex] to one side of the equation:
[tex]\[ 5y + 2 - 9y = -10 \][/tex]
[tex]\[ -4y + 2 = -10 \][/tex]
- Move the constant term to the other side:
[tex]\[ -4y = -10 - 2 \][/tex]
[tex]\[ -4y = -12 \][/tex]
- Divide both sides by [tex]\(-4\)[/tex]:
[tex]\[ y = \frac{-12}{-4} \][/tex]
[tex]\[ y = 3 \][/tex]
4. Substitute the value of [tex]\( y \)[/tex] back into one of the original equations to find [tex]\( x \)[/tex]:
- Using equation (1):
[tex]\[ x = 5y + 2 \][/tex]
[tex]\[ x = 5(3) + 2 \][/tex]
[tex]\[ x = 15 + 2 \][/tex]
[tex]\[ x = 17 \][/tex]
5. Write the solution set:
[tex]\[ (x, y) = (17, 3) \][/tex]
Therefore, the solution set is:
[tex]\[ \boxed{(17, 3)} \][/tex]
Select the correct choice:
A. The solution set is [tex]\((17, 3)\)[/tex].
B. There are infinitely many solutions.
C. There is no solution.
1. Given Equations:
[tex]\[ (1) \quad x = 5y + 2 \][/tex]
[tex]\[ (2) \quad x = 9y - 10 \][/tex]
2. Equate the expressions for [tex]\( x \)[/tex] from both equations:
[tex]\[ 5y + 2 = 9y - 10 \][/tex]
3. Solve for [tex]\( y \)[/tex]:
- Move the terms involving [tex]\( y \)[/tex] to one side of the equation:
[tex]\[ 5y + 2 - 9y = -10 \][/tex]
[tex]\[ -4y + 2 = -10 \][/tex]
- Move the constant term to the other side:
[tex]\[ -4y = -10 - 2 \][/tex]
[tex]\[ -4y = -12 \][/tex]
- Divide both sides by [tex]\(-4\)[/tex]:
[tex]\[ y = \frac{-12}{-4} \][/tex]
[tex]\[ y = 3 \][/tex]
4. Substitute the value of [tex]\( y \)[/tex] back into one of the original equations to find [tex]\( x \)[/tex]:
- Using equation (1):
[tex]\[ x = 5y + 2 \][/tex]
[tex]\[ x = 5(3) + 2 \][/tex]
[tex]\[ x = 15 + 2 \][/tex]
[tex]\[ x = 17 \][/tex]
5. Write the solution set:
[tex]\[ (x, y) = (17, 3) \][/tex]
Therefore, the solution set is:
[tex]\[ \boxed{(17, 3)} \][/tex]
Select the correct choice:
A. The solution set is [tex]\((17, 3)\)[/tex].
B. There are infinitely many solutions.
C. There is no solution.