Find the indefinite integral. (Remember to use absolute values where appropriate.)

[tex]\[ \int \frac{\cos t}{1+\sin t} \, dt \][/tex]

[tex]\[\square + C\][/tex]



Answer :

To find the indefinite integral [tex]\(\int \frac{\cos t}{1+\sin t} \, dt\)[/tex], let's proceed with the following steps:

1. Substitution:
Let's use the substitution [tex]\(u = 1 + \sin t\)[/tex]. Then we need to find the differential [tex]\(du\)[/tex].

Recall that the derivative of [tex]\(\sin t\)[/tex] with respect to [tex]\(t\)[/tex] is [tex]\(\cos t\)[/tex]. Hence, we have:
[tex]\[ du = \cos t \, dt \][/tex]
This implies that [tex]\( \cos t \, dt = du \)[/tex].

2. Rewrite the integral:
Using the substitution, the integral [tex]\(\int \frac{\cos t}{1+\sin t} \, dt\)[/tex] transforms to:
[tex]\[ \int \frac{du}{u} \][/tex]
Here we made the substitution [tex]\(\cos t \, dt = du\)[/tex] and [tex]\(u = 1 + \sin t\)[/tex].

3. Integrate:
The integral [tex]\(\int \frac{du}{u}\)[/tex] is a standard integral and is given by:
[tex]\[ \int \frac{du}{u} = \ln |u| + C \][/tex]

4. Substitute back [tex]\(u\)[/tex]:
Recall that [tex]\(u = 1 + \sin t\)[/tex]. Substitute back into the expression for the integral:
[tex]\[ \ln |1 + \sin t| + C \][/tex]

Therefore, the indefinite integral [tex]\(\int \frac{\cos t}{1+\sin t} \, dt\)[/tex] evaluates to:
[tex]\[ \boxed{\ln |1 + \sin t| + C} \][/tex]