Solve for [tex]y[/tex] in terms of [tex]x[/tex].

A. [tex]2x + y = -3[/tex]
B. [tex]y = -2x - 3[/tex]
C. [tex]y = 2x - 3[/tex]
D. [tex]-2x = -3 - y[/tex]



Answer :

Sure! Let's solve for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex] in each of the given equations step-by-step:

### 1. Solving [tex]\(2x + y = -3\)[/tex]
1. Start with the equation:
[tex]\[ 2x + y = -3 \][/tex]
2. Isolate [tex]\(y\)[/tex] by subtracting [tex]\(2x\)[/tex] from both sides:
[tex]\[ y = -2x - 3 \][/tex]
After solving, we get:
[tex]\[ y = -2x - 3 \][/tex]

### 2. Solving [tex]\(y = -2x - 3\)[/tex]
This equation is already solved for [tex]\(y\)[/tex]:
[tex]\[ y = -2x - 3 \][/tex]

### 3. Solving [tex]\(y = 2x - 3\)[/tex]
This equation is also already solved for [tex]\(y\)[/tex]:
[tex]\[ y = 2x - 3 \][/tex]

### 4. Solving [tex]\(-2x = -3 - y\)[/tex]
1. Start with the equation:
[tex]\[ -2x = -3 - y \][/tex]
2. Add [tex]\(y\)[/tex] to both sides to move [tex]\(y\)[/tex] to the left side:
[tex]\[ -2x + y = -3 \][/tex]
3. Isolate [tex]\(y\)[/tex] by subtracting [tex]\(2x\)[/tex] from both sides:
[tex]\[ y = 2x - 3 \][/tex]

After solving, we get:
[tex]\[ y = 2x - 3 \][/tex]

Thus, the solutions for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex] are:
[tex]\[ y = -2x - 3 \quad \text{(from the first and second equations)} \][/tex]
[tex]\[ y = 2x - 3 \quad \text{(from the third and fourth equations)} \][/tex]