What is the solution to [tex]$3x + 2.4 \geq 3.0$[/tex]?

A. [tex]$x \geq 0.2$[/tex]
B. [tex][tex]$x \geq 0.6$[/tex][/tex]
C. [tex]$x \geq 1.8$[/tex]
D. [tex]$x \geq 2.5$[/tex]



Answer :

To solve the inequality [tex]\(3x + 2.4 \geq 3.0\)[/tex], we need to isolate [tex]\(x\)[/tex] on one side of the inequality. Here are the step-by-step details:

1. Subtract 2.4 from both sides of the inequality:

[tex]\(3x + 2.4 \geq 3.0\)[/tex]

Subtracting 2.4 from both sides gives:

[tex]\(3x + 2.4 - 2.4 \geq 3.0 - 2.4\)[/tex]

Simplifying this, we get:

[tex]\(3x \geq 0.6\)[/tex]

2. Divide both sides by 3 to solve for [tex]\(x\)[/tex]:

[tex]\(\frac{3x}{3} \geq \frac{0.6}{3}\)[/tex]

Simplifying this, we get:

[tex]\(x \geq 0.2\)[/tex]

Therefore, the solution to the inequality [tex]\(3x + 2.4 \geq 3.0\)[/tex] is:
[tex]\[ x \geq 0.2 \][/tex]

Hence, the correct answer is [tex]\( x \geq 0.2 \)[/tex].