Evaluate the expression when [tex]\( a = 2 \)[/tex] and [tex]\( b = 3 \)[/tex].

[tex]\[ 3a^2 - 5a - 4(a - b) + 3b \][/tex]

[tex]\[ 3(2)^2 - 5(2) - 4(2 - 3) + 3(3) = ? \][/tex]



Answer :

Let's evaluate the given expression step by step when [tex]\( a = 2 \)[/tex] and [tex]\( b = 3 \)[/tex].

Given expression:
[tex]\[ 3a^2 - 5a - 4(a - b) + 3b \][/tex]

1. Substitute [tex]\( a = 2 \)[/tex] and [tex]\( b = 3 \)[/tex] into the expression:
[tex]\[ 3(2)^2 - 5(2) - 4(2 - 3) + 3(3) \][/tex]

2. Evaluate the exponentiation and multiplications:
[tex]\[ 3(4) - 5(2) - 4(-1) + 3(3) \][/tex]

3. Simplify each term individually:
[tex]\[ 3 \times 4 = 12 \][/tex]
[tex]\[ 5 \times 2 = 10 \][/tex]
[tex]\[ 4 \times (-1) = -4 \][/tex]
[tex]\[ 3 \times 3 = 9 \][/tex]

4. Substitute these values back into the expression:
[tex]\[ 12 - 10 - (-4) + 9 \][/tex]

5. Simplify the addition and subtraction sequence:
[tex]\[ 12 - 10 + 4 + 9 \][/tex]
[tex]\[ 2 + 4 + 9 \][/tex]
[tex]\[ 6 + 9 \][/tex]
[tex]\[ 15 \][/tex]

Therefore, the value of the expression when [tex]\( a = 2 \)[/tex] and [tex]\( b = 3 \)[/tex] is:
[tex]\[ \boxed{15} \][/tex]