The radius of the circular base of a cone is 5 feet and the height is 18 feet. What is the volume of the cone?

A. [tex]1,800 \pi \, \text{ft}^3[/tex]
B. [tex]600 \pi \, \text{ft}^3[/tex]
C. [tex]450 \pi \, \text{ft}^3[/tex]
D. [tex]150 \pi \, \text{ft}^3[/tex]



Answer :

To determine the volume of a cone with a circular base, we use the formula for the volume of a cone, which is given by:

[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

Where:
- [tex]\( V \)[/tex] is the volume.
- [tex]\( r \)[/tex] is the radius of the base.
- [tex]\( h \)[/tex] is the height of the cone.
- [tex]\(\pi \)[/tex] is a constant (approximately equal to 3.14159).

Given:
- The radius of the base [tex]\( r = 5 \)[/tex] feet.
- The height of the cone [tex]\( h = 18 \)[/tex] feet.

We substitute these values into the volume formula:

[tex]\[ V = \frac{1}{3} \pi (5)^2 (18) \][/tex]

First, calculate the area of the base, which involves squaring the radius:

[tex]\[ r^2 = 5^2 = 25 \][/tex]

Next, multiply this result by the height:

[tex]\[ 25 \times 18 = 450 \][/tex]

Now, multiply by [tex]\(\frac{1}{3}\)[/tex]:

[tex]\[ \frac{1}{3} \times 450 = 150 \][/tex]

Finally, multiply by [tex]\(\pi \)[/tex]:

[tex]\[ V = 150 \pi \][/tex]

Thus, the volume of the cone is:

[tex]\[ V = 150 \pi \text{ cubic feet} \][/tex]

Among the provided choices, the correct answer is:

[tex]\[ \boxed{150 \pi \, \text{ft}^3} \][/tex]