Write down the first five terms of the sequence [tex]a_n=\frac{4n}{n+5}[/tex].

[tex]\[
\begin{array}{l}
a_1 = \square \\
a_2 = \square \\
a_3 = \square \\
a_4 = \square \\
a_5 = \square
\end{array}
\][/tex]



Answer :

Let's write down the first five terms of the sequence [tex]\( a_n = \frac{4n}{n+5} \)[/tex].

### Finding [tex]\( a_1 \)[/tex]:
For [tex]\( n = 1 \)[/tex]:
[tex]\[ a_1 = \frac{4 \cdot 1}{1 + 5} = \frac{4}{6} = \frac{2}{3} \approx 0.6666666666666666 \][/tex]

### Finding [tex]\( a_2 \)[/tex]:
For [tex]\( n = 2 \)[/tex]:
[tex]\[ a_2 = \frac{4 \cdot 2}{2 + 5} = \frac{8}{7} \approx 1.1428571428571428 \][/tex]

### Finding [tex]\( a_3 \)[/tex]:
For [tex]\( n = 3 \)[/tex]:
[tex]\[ a_3 = \frac{4 \cdot 3}{3 + 5} = \frac{12}{8} = \frac{3}{2} = 1.5 \][/tex]

### Finding [tex]\( a_4 \)[/tex]:
For [tex]\( n = 4 \)[/tex]:
[tex]\[ a_4 = \frac{4 \cdot 4}{4 + 5} = \frac{16}{9} \approx 1.7777777777777777 \][/tex]

### Finding [tex]\( a_5 \)[/tex]:
For [tex]\( n = 5 \)[/tex]:
[tex]\[ a_5 = \frac{4 \cdot 5}{5 + 5} = \frac{20}{10} = 2 \][/tex]

Therefore, the first five terms of the sequence are:
[tex]\[ \begin{array}{l} a_1 = 0.6666666666666666 \\ a_2 = 1.1428571428571428 \\ a_3 = 1.5 \\ a_4 = 1.7777777777777777 \\ a_5 = 2.0 \end{array} \][/tex]