What is the length of the minor arc SV in radians?

A. [tex]20 \pi[/tex] in.

B. [tex]28 \pi[/tex] in.

C. [tex]40 \pi[/tex] in.

D. [tex]63 \pi[/tex] in.

[tex]\[ L = r \times \theta \][/tex]

where [tex]\( r \)[/tex] is the radius of the circle and [tex]\( \theta \)[/tex] is the measure of the central angle in radians.

Given:

- [tex]\( r = 24 \)[/tex] inches

- [tex]\( \theta = \frac{5\pi}{6} \)[/tex] radians

By substituting the given values into the formula, we get:

[tex]\[ L = 24 \times \frac{5\pi}{6} \][/tex]

To simplify the multiplication:

[tex]\[ L = 24 \times \frac{5\pi}{6} = 24 \times \frac{5}{6} \times \pi = 4 \times 5 \times \pi = 20\pi \][/tex]

So, the length of the minor arc [tex]\( SV \)[/tex] is:

[tex]\[ 20\pi \ \text{inches} \][/tex]

Therefore, the correct answer is [tex]\( 20\pi \)[/tex] inches.