An arc on a circle measures [tex]85^{\circ}[/tex]. The measure of the central angle, in radians, is within which range?

A. 0 to [tex]\frac{\pi}{2}[/tex] radians
B. [tex]\frac{\pi}{2}[/tex] to [tex]\pi[/tex] radians
C. [tex]\pi[/tex] to [tex]\frac{3\pi}{2}[/tex] radians
D. [tex]\frac{3\pi}{2}[/tex] to [tex]2\pi[/tex] radians



Answer :

To find the measure of the central angle in radians and determine its range, follow these steps:

1. Convert the angle from degrees to radians:
The given measure of the arc is [tex]\( 85^\circ \)[/tex]. One radian is equivalent to [tex]\( \frac{\pi}{180} \)[/tex] degrees. Therefore, the measure of the central angle in radians can be calculated using the conversion formula:

[tex]\[ \text{Radians} = \text{Degrees} \times \left( \frac{\pi}{180} \right) \][/tex]

Plugging in [tex]\( 85^\circ \)[/tex]:

[tex]\[ 85^\circ \times \left( \frac{\pi}{180} \right) = \frac{85\pi}{180} \approx 1.4835298641951802 \text{ radians} \][/tex]

2. Determine the range of the central angle:
Next, we need to identify which range this radian measure falls into among the given options:

- [tex]\( 0 \)[/tex] to [tex]\( \frac{\pi}{2} \approx 1.570796 \)[/tex]
- [tex]\( \frac{\pi}{2} \approx 1.570796 \)[/tex] to [tex]\( \pi \approx 3.141593 \)[/tex]
- [tex]\( \pi \approx 3.141593 \)[/tex] to [tex]\( \frac{3\pi}{2} \approx 4.712389 \)[/tex]
- [tex]\( \frac{3\pi}{2} \approx 4.712389 \)[/tex] to [tex]\( 2\pi \approx 6.283185 \)[/tex]

We see that [tex]\( 1.4835298641951802 \)[/tex] radians is less than [tex]\( \frac{\pi}{2} \)[/tex] and greater than [tex]\( 0 \)[/tex]. Therefore, it falls within the range [tex]\( 0 \)[/tex] to [tex]\( \frac{\pi}{2} \)[/tex].

Hence, the central angle of the arc measuring [tex]\( 85^\circ \)[/tex] is approximately [tex]\( 1.4835298641951802 \)[/tex] radians, and it falls within the range:

[tex]\[ 0 \text{ to } \frac{\pi}{2} \text{ radians} \][/tex]