Kaylib's eye-level height is 48 ft above sea level, and Addison's eye-level height is [tex]$85 \frac{1}{3} \text{ ft}$[/tex] above sea level. How much farther can Addison see to the horizon? Use the formula [tex]$d=\sqrt{\frac{3h}{2}}$[/tex], with [tex][tex]$d$[/tex][/tex] being the distance they can see in miles and [tex]$h$[/tex] being their eye-level height in feet.

A. [tex]\sqrt{2} \text{ mi}[/tex]

B. [tex]2 \sqrt{2} \text{ mi}[/tex]

C. [tex]14 \sqrt{2} \text{ mi}[/tex]

D. [tex]28 \sqrt{2} \text{ mi}[/tex]



Answer :

To find out how much farther Addison can see to the horizon compared to Kaylib, we can follow these steps:

1. Given Heights:
- Kaylib's eye-level height is [tex]\( 48 \)[/tex] feet.
- Addison's eye-level height is [tex]\( 85 \frac{1}{3} \)[/tex] feet, which can be written as [tex]\( 85 + \frac{1}{3} \)[/tex] feet or [tex]\( \frac{256}{3} \)[/tex] feet.

2. Distance to the Horizon Formula:
The formula to calculate the distance to the horizon [tex]\( d \)[/tex] (in miles) based on the eye-level height [tex]\( h \)[/tex] (in feet) is:
[tex]\[ d = \sqrt{\frac{3h}{2}} \][/tex]

3. Calculate the Distance for Kaylib:
Using Kaylib's height ([tex]\( h = 48 \)[/tex]):
[tex]\[ d_{\text{Kaylib}} = \sqrt{\frac{3 \times 48}{2}} = \sqrt{\frac{144}{2}} = \sqrt{72} \approx 8.48528137423857 \, \text{miles} \][/tex]

4. Calculate the Distance for Addison:
Using Addison's height ([tex]\( h = 85 \frac{1}{3} \)[/tex]):
[tex]\[ d_{\text{Addison}} = \sqrt{\frac{3 \times 85.333333}{2}} = \sqrt{\frac{256}{2}} = \sqrt{128} \approx 11.313708498984761 \, \text{miles} \][/tex]

5. Calculate the Difference in Distance:
To find how much farther Addison can see compared to Kaylib:
[tex]\[ d_{\text{difference}} = d_{\text{Addison}} - d_{\text{Kaylib}} \approx 11.313708498984761 - 8.48528137423857 \approx 2.8284271247461916 \, \text{miles} \][/tex]

Hence, Addison can see approximately [tex]\( 2.8284271247461916 \)[/tex] miles farther than Kaylib to the horizon. This value simplifies to [tex]\( 2\sqrt{2} \)[/tex] miles, which matches one of the answer choices.

Therefore, the correct answer is:
[tex]\[ 2\sqrt{2} \text{ miles} \][/tex]