Answer :
Sure, let’s solve this problem step-by-step.
Step 1: Understand the given data
- Building A costs \[tex]$4000 per month - Building B costs \$[/tex]300 per month
- Building C costs \[tex]$2500 per month Additionally, we also know the square footage: - Building A: 1000 square feet - Building B: 100 square feet - Building C: 500 square feet Step 2: Calculate the monthly cost per square foot for each building For Building A: \[ \text{Cost per square foot} = \frac{\$[/tex]4000}{1000 \text{ square feet}} = \[tex]$4.00 \text{ per square foot per month} \] For Building B: \[ \text{Cost per square foot} = \frac{\$[/tex]300}{100 \text{ square feet}} = \[tex]$3.00 \text{ per square foot per month} \] For Building C: \[ \text{Cost per square foot} = \frac{\$[/tex]2500}{500 \text{ square feet}} = \[tex]$5.00 \text{ per square foot per month} \] Step 3: Round the results to the nearest hundredth - Building A: \$[/tex]4.00 per square foot per month
- Building B: \[tex]$3.00 per square foot per month - Building C: \$[/tex]5.00 per square foot per month
Step 4: Determine the recommended building
The Benton Company should rent the building with the lowest cost per square foot per month. Comparing the costs:
- Building A: \[tex]$4.00 per square foot per month - Building B: \$[/tex]3.00 per square foot per month
- Building C: \[tex]$5.00 per square foot per month Conclusion: The lowest cost per square foot per month is \$[/tex]3.00, which is for Building B. Therefore, the Benton Company should rent Building B.
Step 1: Understand the given data
- Building A costs \[tex]$4000 per month - Building B costs \$[/tex]300 per month
- Building C costs \[tex]$2500 per month Additionally, we also know the square footage: - Building A: 1000 square feet - Building B: 100 square feet - Building C: 500 square feet Step 2: Calculate the monthly cost per square foot for each building For Building A: \[ \text{Cost per square foot} = \frac{\$[/tex]4000}{1000 \text{ square feet}} = \[tex]$4.00 \text{ per square foot per month} \] For Building B: \[ \text{Cost per square foot} = \frac{\$[/tex]300}{100 \text{ square feet}} = \[tex]$3.00 \text{ per square foot per month} \] For Building C: \[ \text{Cost per square foot} = \frac{\$[/tex]2500}{500 \text{ square feet}} = \[tex]$5.00 \text{ per square foot per month} \] Step 3: Round the results to the nearest hundredth - Building A: \$[/tex]4.00 per square foot per month
- Building B: \[tex]$3.00 per square foot per month - Building C: \$[/tex]5.00 per square foot per month
Step 4: Determine the recommended building
The Benton Company should rent the building with the lowest cost per square foot per month. Comparing the costs:
- Building A: \[tex]$4.00 per square foot per month - Building B: \$[/tex]3.00 per square foot per month
- Building C: \[tex]$5.00 per square foot per month Conclusion: The lowest cost per square foot per month is \$[/tex]3.00, which is for Building B. Therefore, the Benton Company should rent Building B.