What is the following quotient?

[tex]\[ \frac{1}{1+\sqrt{3}} \][/tex]

A. [tex]\(\frac{\sqrt{3}}{4}\)[/tex]

B. [tex]\(\frac{1+\sqrt{3}}{4}\)[/tex]

C. [tex]\(\frac{1-\sqrt{3}}{4}\)[/tex]

D. [tex]\(\frac{-1+\sqrt{3}}{2}\)[/tex]



Answer :

To find the quotient of [tex]\(\frac{1}{1 + \sqrt{3}}\)[/tex] and express it in a simplified form, we need to rationalize the denominator. Here is the step-by-step solution:

1. Identify the expression:
[tex]\[ \frac{1}{1 + \sqrt{3}} \][/tex]

2. Multiply by the conjugate of the denominator:
The conjugate of [tex]\(1 + \sqrt{3}\)[/tex] is [tex]\(1 - \sqrt{3}\)[/tex]. Thus, we multiply both numerator and denominator by this conjugate to remove the square root from the denominator:
[tex]\[ \frac{1}{1 + \sqrt{3}} \cdot \frac{1 - \sqrt{3}}{1 - \sqrt{3}} = \frac{1 \cdot (1 - \sqrt{3})}{(1 + \sqrt{3}) \cdot (1 - \sqrt{3})} \][/tex]

3. Calculate the new numerator:
[tex]\[ 1 \cdot (1 - \sqrt{3}) = 1 - \sqrt{3} \][/tex]

4. Calculate the new denominator:
The denominator is a difference of squares:
[tex]\[ (1 + \sqrt{3}) \cdot (1 - \sqrt{3}) = 1^2 - (\sqrt{3})^2 = 1 - 3 = -2 \][/tex]

5. Form the rationalized fraction:
[tex]\[ \frac{1 - \sqrt{3}}{-2} \][/tex]

6. Simplify the fraction:
Dividing each term in the numerator by the denominator:
[tex]\[ \frac{1 - \sqrt{3}}{-2} = -\frac{1}{2} + \frac{\sqrt{3}}{2} \][/tex]

7. Match the form with one of the given choices:
The simplified form is equivalent to:
[tex]\[ -\frac{1}{2} + \frac{\sqrt{3}}{2} \equiv \frac{-1 + \sqrt{3}}{2} \][/tex]

Therefore, the correct quotient is:
[tex]\[ \boxed{\frac{-1 + \sqrt{3}}{2}} \][/tex]

Other Questions