Write the equation of a line perpendicular to the line [tex]$y = 2x + 2$[/tex] that goes through the point [tex](9, -2)[/tex].

Write your answer in slope-intercept form, using reduced fractions for the slope and intercept.

Point-Slope Form: [tex]y - \square = \square (x - \square)[/tex]

Slope-Intercept Form: [tex]y = \square x + \square[/tex]



Answer :

To find the equation of a line that is perpendicular to the given line [tex]\( y = 2x + 2 \)[/tex] and passes through the point [tex]\( (9, -2) \)[/tex], follow these steps:

### Step 1: Determine the Slope of the Perpendicular Line

The slope of the given line [tex]\( y = 2x + 2 \)[/tex] is 2. For a line to be perpendicular to another, its slope must be the negative reciprocal of the original line's slope.

- Original slope: [tex]\( m = 2 \)[/tex]
- Perpendicular slope: [tex]\( m_{\perpendicular} = -\frac{1}{2} \)[/tex]

### Step 2: Use the Point-Slope Form of the Equation

The point-slope form of a linear equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex].

- Given point: [tex]\( (x_1, y_1) = (9, -2) \)[/tex]
- Perpendicular slope: [tex]\( m_{\perpendicular} = -\frac{1}{2} \)[/tex]

Plug these values into the point-slope form:

[tex]\[ y - (-2) = -\frac{1}{2}(x - 9) \][/tex]

Simplify the equation:

[tex]\[ y + 2 = -\frac{1}{2}(x - 9) \][/tex]

### Step 3: Convert to Slope-Intercept Form

Now, convert this equation to the slope-intercept form [tex]\( y = mx + b \)[/tex].

Start by distributing the slope on the right-hand side:

[tex]\[ y + 2 = -\frac{1}{2}x + \frac{9}{2} \][/tex]

Isolate [tex]\( y \)[/tex]:

[tex]\[ y = -\frac{1}{2}x + \frac{9}{2} - 2 \][/tex]

Combine the constants on the right-hand side:

[tex]\[ y = -\frac{1}{2}x + \frac{9}{2} - \frac{4}{2} \][/tex]

[tex]\[ y = -\frac{1}{2}x + \frac{5}{2} \][/tex]

### Final Forms

Point-Slope Form:

[tex]\[ y - (-2) = -\frac{1}{2}(x - 9) \][/tex]

Simplified:

[tex]\[ y + 2 = -\frac{1}{2}(x - 9) \][/tex]

Slope-Intercept Form:

[tex]\[ y = -\frac{1}{2}x + \frac{5}{2} \][/tex]