Answer :

Sure, let's solve the expression step-by-step, given [tex]\( m = 8 \)[/tex] and [tex]\( n = -2 \)[/tex].

We need to evaluate the expression:
[tex]\[ (m - n)^2 - 3m + 3n + (m - n + 6) \][/tex]

First, let's compute each part of the expression individually.

1. Calculate [tex]\( (m - n)^2 \)[/tex]:
[tex]\[ m - n = 8 - (-2) = 8 + 2 = 10 \][/tex]
[tex]\[ (m - n)^2 = 10^2 = 100 \][/tex]

2. Calculate [tex]\(-3m \)[/tex]:
[tex]\[ -3m = -3 \times 8 = -24 \][/tex]

3. Calculate [tex]\( 3n \)[/tex]:
[tex]\[ 3n = 3 \times -2 = -6 \][/tex]

4. Calculate [tex]\( (m - n + 6) \)[/tex]:
[tex]\[ m - n = 10 \quad \text{(as calculated before)} \][/tex]
[tex]\[ m - n + 6 = 10 + 6 = 16 \][/tex]

Now, add all the parts together:
[tex]\[ (m - n)^2 + (-3m) + 3n + (m - n + 6) = 100 + (-24) + (-6) + 16 \][/tex]

Combine the values:
[tex]\[ 100 - 24 - 6 + 16 = 86 \][/tex]

So, the evaluated expression is:
[tex]\[ 86 \][/tex]