Select the correct answer.

Point [tex]P[/tex] is placed exactly between two charges, [tex]Q_1[/tex] and [tex]Q_2[/tex]. If the electric field experienced by point [tex]P[/tex] due to charge [tex]Q_1[/tex] is [tex]1.5 \times 10^5[/tex] newtons/coulomb and the field due to charge [tex]Q_2[/tex] is [tex]7.2 \times 10^5[/tex] newtons/coulomb, what is the net electric field at point [tex]P[/tex]?

A. [tex]1.5 \times 10^5[/tex] newtons/coulomb
B. [tex]3.0 \times 10^5[/tex] newtons/coulomb
C. [tex]5.7 \times 10^5[/tex] newtons/coulomb
D. [tex]8.7 \times 10^5[/tex] newtons/coulomb
E. [tex]9.0 \times 10^5[/tex] newtons/coulomb



Answer :

To calculate the net electric field at point [tex]\( P \)[/tex] due to two charges [tex]\( Q_1 \)[/tex] and [tex]\( Q_2 \)[/tex], we need to consider the vector sum of the electric fields produced by each charge at point [tex]\( P \)[/tex].

Given:
- The electric field due to charge [tex]\( Q_1 \)[/tex] ([tex]\( E_1 \)[/tex]) is [tex]\( 1.5 \times 10^5 \)[/tex] newtons/coulomb.
- The electric field due to charge [tex]\( Q_2 \)[/tex] ([tex]\( E_2 \)[/tex]) is [tex]\( 7.2 \times 10^5 \)[/tex] newtons/coulomb.

Since point [tex]\( P \)[/tex] is exactly between the two charges, and assuming the fields are along the same line, the net electric field at point [tex]\( P \)[/tex] is the sum of the magnitudes of these fields.

1. First, identify the magnitudes of the electric fields:
[tex]\[ E_1 = 1.5 \times 10^5 \; \text{newtons/coulomb} \][/tex]
[tex]\[ E_2 = 7.2 \times 10^5 \; \text{newtons/coulomb} \][/tex]

2. To find the net electric field, we add these two magnitudes together:
[tex]\[ \text{Net electric field} = E_1 + E_2 \][/tex]
[tex]\[ \text{Net electric field} = (1.5 \times 10^5) + (7.2 \times 10^5) \][/tex]

3. Calculate the sum:
[tex]\[ \text{Net electric field} = 8.7 \times 10^5 \; \text{newtons/coulomb} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{8.7 \times 10^5 \; \text{newtons/coulomb}} \][/tex]

So, the correct choice is:
[tex]\[ \text{D. } 8.7 \times 10^5 \text{ newtons/coulomb} \][/tex]

Other Questions