To find the volume of a pyramid, we can use the formula:
[tex]\[ V = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]
In this particular pyramid, we're given:
- The base area [tex]\( A = 5.2 \, \text{cm}^2 \)[/tex]
- The height [tex]\( h \, \text{cm} \)[/tex]
We need to substitute these values into the volume formula.
[tex]\[ V = \frac{1}{3} \times 5.2 \times h \][/tex]
Simplifying this expression, we get:
[tex]\[ V = \frac{1}{3} \times 5.2 \times h \, \text{cm}^3 \][/tex]
Therefore, the expression that represents the volume is:
[tex]\[ \frac{1}{3}(5.2) h \, \text{cm}^3 \][/tex]
So, the correct option is:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]