Given the following arithmetic sequence, find the sum of the sequence up to the 70th term.

Let: [tex]a_1 = 6 \quad a_8 = 48[/tex]

A. 4,500
B. 9,800
C. 14,910
D. 29,820



Answer :

Sure! Let's solve this step-by-step.

Given:
- First term of the arithmetic sequence: [tex]\( a_1 = 6 \)[/tex]
- Eighth term of the arithmetic sequence: [tex]\( a_8 = 48 \)[/tex]

### 1. Determine the common difference [tex]\(d\)[/tex]
The formula for the [tex]\(n\)[/tex]-th term of an arithmetic sequence is:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]

For the eighth term ([tex]\( a_8 \)[/tex]):
[tex]\[ a_8 = a_1 + (8 - 1) \cdot d \][/tex]
[tex]\[ 48 = 6 + 7d \][/tex]
Subtract 6 from both sides:
[tex]\[ 42 = 7d \][/tex]
Divide both sides by 7:
[tex]\[ d = 6 \][/tex]

So, the common difference [tex]\(d\)[/tex] is 6.

### 2. Find the 70th term ([tex]\( a_{70} \)[/tex])
Using the formula for the [tex]\(n\)[/tex]-th term again:
[tex]\[ a_{70} = a_1 + (70 - 1) \cdot d \][/tex]
[tex]\[ a_{70} = 6 + 69 \cdot 6 \][/tex]
[tex]\[ a_{70} = 6 + 414 \][/tex]
[tex]\[ a_{70} = 420 \][/tex]

So, the 70th term is 420.

### 3. Calculate the sum of the first 70 terms ([tex]\( S_{70} \)[/tex])
The formula for the sum of the first [tex]\(n\)[/tex] terms of an arithmetic sequence is:
[tex]\[ S_n = \frac{n}{2} \cdot (a_1 + a_n) \][/tex]

For 70 terms:
[tex]\[ S_{70} = \frac{70}{2} \cdot (6 + 420) \][/tex]
[tex]\[ S_{70} = 35 \cdot 426 \][/tex]
[tex]\[ S_{70} = 14910 \][/tex]

So, the sum of the arithmetic sequence up to the 70th term is 14,910.

Thus, the correct answer is:
- 14,910