What is the [tex]$x$[/tex]-coordinate of the point that divides the directed line segment from [tex]$J$[/tex] to [tex]$K$[/tex] into a ratio of [tex]$2:5$[/tex]?

[tex]\[ x = \left(\frac{m}{m+n}\right) \left(x_2 - x_1\right) + x_1 \][/tex]

A. [tex]$-4$[/tex]

B. [tex]$-2$[/tex]

C. [tex]$2$[/tex]

D. [tex]$4$[/tex]



Answer :

To determine the [tex]\( x \)[/tex]-coordinate of the point that divides the directed line segment from [tex]\( J \)[/tex] to [tex]\( K \)[/tex] in a ratio of 2.5, we follow these steps:

1. Identify the coordinates of points [tex]\( J \)[/tex] and [tex]\( K \)[/tex]. Let's set:
[tex]\[ J = (x_1) = -4 \][/tex]
[tex]\[ K = (x_2) = 4 \][/tex]

2. Let's denote the ratio as [tex]\( m:n \)[/tex] where [tex]\( m = 2.5 \)[/tex] and [tex]\( n = 1 \)[/tex].

3. Use the formula to find the x-coordinate of the point dividing the segment in the ratio [tex]\( m:n \)[/tex]:
[tex]\[ x = \left(\frac{m}{m+n}\right) \left(x_2 - x_1\right) + x_1 \][/tex]

4. Substitute the values into the formula:
[tex]\[ x = \left(\frac{2.5}{2.5 + 1}\right) \left(4 - (-4)\right) + (-4) \][/tex]

5. Simplify the expression inside the parenthesis:
[tex]\[ x = \left(\frac{2.5}{3.5}\right) \left(4 + 4\right) - 4 \][/tex]
[tex]\[ x = \left(\frac{2.5}{3.5}\right) \times 8 - 4 \][/tex]

6. Calculate the fraction:
[tex]\[ \frac{2.5}{3.5} = \frac{5}{7} \][/tex]

7. Continue with the simplified values:
[tex]\[ x = \left(\frac{5}{7}\right) \times 8 - 4 \][/tex]

8. Multiply the fraction by 8:
[tex]\[ x = \frac{5 \times 8}{7} - 4 \][/tex]
[tex]\[ x = \frac{40}{7} - 4 \][/tex]

9. Simplify the fraction and calculate the final result:
[tex]\[ x \approx 5.714285714285714 - 4 \][/tex]
[tex]\[ x \approx 1.7142857142857144 \][/tex]

Therefore, the [tex]\( x \)[/tex]-coordinate of the point that divides the line segment from [tex]\( J \)[/tex] to [tex]\( K \)[/tex] into the ratio of 2.5 is approximately [tex]\( 1.7142857142857144 \)[/tex].