A line segment has endpoints at [tex]\((-4,-6)\)[/tex] and [tex]\((-6,4)\)[/tex]. Which reflection will produce an image with endpoints at [tex]\((4,-6)\)[/tex] and [tex]\((6,4)\)[/tex]?

A. A reflection of the line segment across the [tex]\(x\)[/tex]-axis
B. A reflection of the line segment across the [tex]\(y\)[/tex]-axis
C. A reflection of the line segment across the line [tex]\(y=x\)[/tex]
D. A reflection of the line segment across the line [tex]\(y=-x\)[/tex]



Answer :

To determine which reflection will produce an image with endpoints at [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex] from the original endpoints [tex]\((-4, -6)\)[/tex] and [tex]\((-6, 4)\)[/tex], let's examine the effects of reflecting the line segment across different axes and lines.

1. Reflection across the [tex]\(x\)[/tex]-axis:

- The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\(x\)[/tex]-axis results in the point [tex]\((x, -y)\)[/tex].
- Reflecting [tex]\((-4, -6)\)[/tex] across the [tex]\(x\)[/tex]-axis results in [tex]\((-4, 6)\)[/tex].
- Reflecting [tex]\((-6, 4)\)[/tex] across the [tex]\(x\)[/tex]-axis results in [tex]\((-6, -4)\)[/tex].
- The endpoints would be [tex]\((-4, 6)\)[/tex] and [tex]\((-6, -4)\)[/tex].

Hence, reflecting across the [tex]\(x\)[/tex]-axis does not yield the desired endpoints [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].

2. Reflection across the [tex]\(y\)[/tex]-axis:

- The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\(y\)[/tex]-axis results in the point [tex]\((-x, y)\)[/tex].
- Reflecting [tex]\((-4, -6)\)[/tex] across the [tex]\(y\)[/tex]-axis results in [tex]\((4, -6)\)[/tex].
- Reflecting [tex]\((-6, 4)\)[/tex] across the [tex]\(y\)[/tex]-axis results in [tex]\((6, 4)\)[/tex].
- The endpoints would be [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].

Therefore, reflecting across the [tex]\(y\)[/tex]-axis yields the desired endpoints [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].

3. Reflection across the line [tex]\(y = x\)[/tex]:

- The reflection of a point [tex]\((x, y)\)[/tex] across the line [tex]\(y = x\)[/tex] results in the point [tex]\((y, x)\)[/tex].
- Reflecting [tex]\((-4, -6)\)[/tex] across the line [tex]\(y = x\)[/tex] results in [tex]\((-6, -4)\)[/tex].
- Reflecting [tex]\((-6, 4)\)[/tex] across the line [tex]\(y = x\)[/tex] results in [tex]\((4, -6)\)[/tex].
- The endpoints would be [tex]\((-6, -4)\)[/tex] and [tex]\((4, -6)\)[/tex].

Hence, reflecting across the line [tex]\(y = x\)[/tex] does not yield the desired endpoints [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].

4. Reflection across the line [tex]\(y = -x\)[/tex]:

- The reflection of a point [tex]\((x, y)\)[/tex] across the line [tex]\(y = -x\)[/tex] results in the point [tex]\((-y, -x)\)[/tex].
- Reflecting [tex]\((-4, -6)\)[/tex] across the line [tex]\(y = -x\)[/tex] results in [tex]\((6, 4)\)[/tex].
- Reflecting [tex]\((-6, 4)\)[/tex] across the line [tex]\(y = -x\)[/tex] results in [tex]\((-4, -6)\)[/tex].
- The endpoints would be [tex]\((6, 4)\)[/tex] and [tex]\((-4, -6)\)[/tex].

Hence, reflecting across the line [tex]\(y = -x\)[/tex] does not yield the desired endpoints [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].

Based on this evaluation, the correct reflection that produces the desired endpoints is:

a reflection of the line segment across the [tex]\(y\)[/tex]-axis.