On a number line, the directed line segment from [tex]\( Q \)[/tex] to [tex]\( S \)[/tex] has endpoints [tex]\( Q \)[/tex] at [tex]\(-8\)[/tex] and [tex]\( S \)[/tex] at [tex]\(12\)[/tex]. Point [tex]\( R \)[/tex] partitions the directed line segment from [tex]\( Q \)[/tex] to [tex]\( S \)[/tex] in a [tex]\(4:1\)[/tex] ratio.

Which expression correctly uses the formula [tex]\(\left(\frac{m}{m+n}\right)(x_2-x_1)+x_1\)[/tex] to find the location of point [tex]\( R \)[/tex]?

A. [tex]\(\left(\frac{1}{1+4}\right)(12-(-8))+(-8)\)[/tex]

B. [tex]\(\left(\frac{4}{4+1}\right)(12-(-8))+(-8)\)[/tex]

C. [tex]\(\left(\frac{4}{4+1}\right)(-8-12)+12\)[/tex]

D. [tex]\(\left(\frac{4}{1+4}\right)(-8-12)+12\)[/tex]



Answer :

To determine which expression correctly uses the formula [tex]\(\left(\frac{m}{m+n}\right)\left(x_2 - x_1\right) + x_1\)[/tex] to find the location of point [tex]\(R\)[/tex], let's break down the problem step-by-step.

1. Identify the given values:
- Endpoint [tex]\( Q \)[/tex] is at -8.
- Endpoint [tex]\( S \)[/tex] is at 12.
- The ratio [tex]\( m : n \)[/tex] is [tex]\( 4 : 1 \)[/tex], where [tex]\( m = 4 \)[/tex] and [tex]\( n = 1 \)[/tex].

2. Set up the formula:
The formula to find the point [tex]\( R \)[/tex] that partitions the segment [tex]\([Q, S]\)[/tex] in the ratio [tex]\( m : n \)[/tex] is:
[tex]\[ R = \left( \frac{m}{m+n} \right) (x_2 - x_1) + x_1 \][/tex]

3. Substitute the values into the formula:
- In our case, [tex]\( x_1 = Q = -8 \)[/tex],
- [tex]\( x_2 = S = 12 \)[/tex],
- [tex]\( m = 4 \)[/tex],
- [tex]\( n = 1 \)[/tex].

Plugging these values into the formula, we get:
[tex]\[ R = \left( \frac{4}{4+1} \right) (12 - (-8)) + (-8) \][/tex]

4. Check the given expressions:
- [tex]\(\left(\frac{1}{1+4}\right)(12-(-8))+(-8)\)[/tex]
- [tex]\(\left(\frac{4}{4+1}\right)(12-(-8))+(-8)\)[/tex]
- [tex]\(\left(\frac{4}{4+1}\right)(-8-12)+12\)[/tex]
- [tex]\(\left(\frac{4}{1+4}\right)(-8-12)+12\)[/tex]

Comparing these with our substituted formula:
[tex]\[ \left( \frac{4}{4+1} \right) (12 - (-8)) + (-8) \][/tex]
The correct expression matches the second option:
[tex]\[ \left(\frac{4}{4+1}\right)(12-(-8))+(-8) \][/tex]

Therefore, the correct expression is:
[tex]\[ \left(\frac{4}{4+1}\right)(12-(-8))+(-8) \][/tex]