\begin{tabular}{|c|c|}
\hline Planet & \begin{tabular}{c}
Mass \\
(kg)
\end{tabular} \\
\hline Earth & [tex]$5.97 \times 10^{24}$[/tex] \\
\hline Mars & [tex]$6.42 \times 10^{23}$[/tex] \\
\hline Saturn & [tex]$5.68 \times 10^{26}$[/tex] \\
\hline Venus & [tex]$4.87 \times 10^{24}$[/tex] \\
\hline
\end{tabular}

Which planet would cause the most curvature in space-time?

A. Venus
B. Earth
C. Mars
D. Saturn



Answer :

To determine which planet would cause the most curvature in space-time, we start by examining the masses given for each planet. Gravitational curvature in Einstein's theory of General Relativity is directly related to the mass of an object; thus, the planet with the largest mass will cause the most curvature.

Here are the given masses for each planet:

1. Earth: [tex]\( 5.97 \times 10^{24} \)[/tex] kg
2. Mars: [tex]\( 6.42 \times 10^{23} \)[/tex] kg
3. Saturn: [tex]\( 5.68 \times 10^{26} \)[/tex] kg
4. Venus: [tex]\( 4.87 \times 10^{24} \)[/tex] kg

To find which planet has the largest mass, we compare each of these values:
- Between Earth ([tex]\( 5.97 \times 10^{24} \)[/tex] kg) and Mars ([tex]\( 6.42 \times 10^{23} \)[/tex] kg), Earth has the larger mass.
- Comparing Earth ([tex]\( 5.97 \times 10^{24} \)[/tex] kg) with Venus ([tex]\( 4.87 \times 10^{24} \)[/tex] kg), Earth still holds a larger mass.
- Finally, comparing Earth ([tex]\( 5.97 \times 10^{24} \)[/tex] kg) to Saturn ([tex]\( 5.68 \times 10^{26} \)[/tex] kg), Saturn has a significantly larger mass.

By comparing these values, it becomes apparent that Saturn, with a mass of [tex]\( 5.68 \times 10^{26} \)[/tex] kg, is the planet with the largest mass.

Therefore, the planet that would cause the most curvature in space-time is Saturn.