The chart lists the masses of four planets.

\begin{tabular}{|l|l|}
\hline
\multicolumn{1}{|c|}{Planet} & Mass \\
\hline
Neptune & [tex]$1.02 \times 10^{20}$[/tex] \\
\hline
Uranus & [tex]$8.68 \times 10^{20}$[/tex] \\
\hline
Mars & [tex]$6.42 \times 10^{23}$[/tex] \\
\hline
Venus & [tex]$4.87 \times 10^{24}$[/tex] \\
\hline
\end{tabular}

According to evidence that supports Einstein's general theory of relativity, which list shows the planets that would cause curvature in space-time from the least amount of curvature to the greatest?

A. Mars, Venus, Uranus, Neptune

B. Neptune, Uranus, Venus, Mars

C. Neptune, Uranus, Mars, Venus

D. Venus, Mars, Uranus, Neptune



Answer :

To determine the planets that would cause curvature in space-time from the least amount of curvature to the greatest, we need to order the planets by their mass from smallest to largest. As Einstein's general theory of relativity predicts, more massive objects cause a greater curvature in space-time.

Let's evaluate the given masses:

- Neptune: [tex]\(1.02 \times 10^{20}\)[/tex] units
- Uranus: [tex]\(8.68 \times 10^{20}\)[/tex] units
- Mars: [tex]\(6.42 \times 10^{23}\)[/tex] units
- Venus: [tex]\(4.87 \times 10^{24}\)[/tex] units

Based on these values, we can organize the planets in increasing order of their masses:

1. Neptune – [tex]\(1.02 \times 10^{20}\)[/tex] units
2. Uranus – [tex]\(8.68 \times 10^{20}\)[/tex] units
3. Mars – [tex]\(6.42 \times 10^{23}\)[/tex] units
4. Venus – [tex]\(4.87 \times 10^{24}\)[/tex] units

Thus, the list of planets ordered from causing the least curvature to the greatest curvature in space-time is:

Neptune, Uranus, Mars, Venus

So, the correct option is:
- Neptune, Uranus, Mars, Venus