Point [tex]\( V \)[/tex] is somewhere on [tex]\( \overline{UW} \)[/tex]. If [tex]\( UV = 2x - 13 \)[/tex], [tex]\( VW = -18 + 2x \)[/tex], and [tex]\( UW = 17 \)[/tex], then find the length of [tex]\( \overline{UV} \)[/tex].

A. 12
B. 11
C. 0
D. 6



Answer :

To solve for the length of [tex]\(\overline{UV}\)[/tex], we need to use the given expressions for the segments and the fact that [tex]\(V\)[/tex] is somewhere on [tex]\(\overline{UW}\)[/tex]. Here are the steps:

1. Express the Segments:
- [tex]\(UV = 2x - 13\)[/tex]
- [tex]\(VW = -18 + 2x\)[/tex]
- [tex]\(UW = 17\)[/tex]

2. Set Up the Equation:
Since [tex]\(V\)[/tex] lies on [tex]\(\overline{UW}\)[/tex], the sum of the segments [tex]\(UV\)[/tex] and [tex]\(VW\)[/tex] must equal the total length of [tex]\(\overline{UW}\)[/tex].
[tex]\[ UV + VW = UW \][/tex]
Substitute the given expressions into the equation:
[tex]\[ (2x - 13) + (-18 + 2x) = 17 \][/tex]

3. Simplify the Equation:
Combine like terms:
[tex]\[ 2x - 13 - 18 + 2x = 17 \][/tex]
[tex]\[ 4x - 31 = 17 \][/tex]

4. Solve for [tex]\(x\)[/tex]:
Isolate [tex]\(x\)[/tex] by adding 31 to both sides of the equation:
[tex]\[ 4x = 48 \][/tex]
Then divide both sides by 4:
[tex]\[ x = 12 \][/tex]

5. Calculate the Length of [tex]\(UV\)[/tex]:
Substitute [tex]\(x = 12\)[/tex] back into the expression for [tex]\(UV\)[/tex]:
[tex]\[ UV = 2x - 13 \][/tex]
[tex]\[ UV = 2(12) - 13 \][/tex]
[tex]\[ UV = 24 - 13 \][/tex]
[tex]\[ UV = 11 \][/tex]

Therefore, the length of [tex]\(\overline{UV}\)[/tex] is [tex]\(11\)[/tex]. The correct answer is [tex]\(11\)[/tex].