Compute the limit below:

[tex]\[ \lim _{x \rightarrow 0} \frac{(3+x)^2-9}{x} \][/tex]

Select the correct answer below:

A. [tex]\(\frac{1}{3}\)[/tex]

B. [tex]\(\frac{2}{3}\)[/tex]

C. [tex]\(\frac{3}{2}\)[/tex]

D. 3

E. 6

F. 12



Answer :

To solve the limit
[tex]\[ \lim _{x \rightarrow 0} \frac{(3+x)^2-9}{x}, \][/tex]
we can proceed as follows:

1. Expand the numerator:
[tex]\[ (3 + x)^2 = 3^2 + 2 \cdot 3 \cdot x + x^2 = 9 + 6x + x^2. \][/tex]

2. Subtract 9 from the expanded form:
[tex]\[ (3 + x)^2 - 9 = 9 + 6x + x^2 - 9 = 6x + x^2. \][/tex]

3. Rewrite the limit using the simplified numerator:
[tex]\[ \frac{(3 + x)^2 - 9}{x} = \frac{6x + x^2}{x}. \][/tex]

4. Simplify the fraction:
[tex]\[ \frac{6x + x^2}{x} = \frac{x(6 + x)}{x} = 6 + x. \][/tex]

5. Evaluate the limit as [tex]\( x \)[/tex] approaches 0:
[tex]\[ \lim_{x \rightarrow 0} (6 + x) = 6 + 0 = 6. \][/tex]

Thus, the limit is
[tex]\[ \lim _{x \rightarrow 0} \frac{(3+x)^2-9}{x} = 6. \][/tex]

Select the correct answer below:
6