Answer :
Certainly! Let's perform the multiplication step-by-step and then express the answer in scientific notation.
1. Identify the numbers to be multiplied:
We have [tex]\(8.20 \times 10^{-2}\)[/tex] and [tex]\(2.50 \times 10^6\)[/tex].
2. Multiply the coefficients (the numerical parts):
[tex]\[ 8.20 \times 2.50 = 20.50 \][/tex]
3. Add the exponents:
When multiplying numbers in scientific notation, we add the exponents:
[tex]\[ (-2) + 6 = 4 \][/tex]
4. Combine the results:
Now, we can combine the multiplied coefficient and the sum of the exponents:
[tex]\[ 20.50 \times 10^4 \][/tex]
5. Express in correct scientific notation:
Scientific notation requires that the coefficient be between 1 and 10. So we need to adjust [tex]\(20.50\)[/tex] to fit that requirement.
[tex]\[ 20.50 = 2.05 \times 10^1 \][/tex]
Therefore,
[tex]\[ 20.50 \times 10^4 = 2.05 \times 10^1 \times 10^4 \][/tex]
6. Combine the exponents once more:
[tex]\[ 2.05 \times 10^{(1+4)} = 2.05 \times 10^5 \][/tex]
So, the result of the operation [tex]\(8.20 \times 10^{-2} \times 2.50 \times 10^6\)[/tex] expressed in correct scientific notation is:
[tex]\[ \boxed{2.05 \times 10^5} \][/tex]
1. Identify the numbers to be multiplied:
We have [tex]\(8.20 \times 10^{-2}\)[/tex] and [tex]\(2.50 \times 10^6\)[/tex].
2. Multiply the coefficients (the numerical parts):
[tex]\[ 8.20 \times 2.50 = 20.50 \][/tex]
3. Add the exponents:
When multiplying numbers in scientific notation, we add the exponents:
[tex]\[ (-2) + 6 = 4 \][/tex]
4. Combine the results:
Now, we can combine the multiplied coefficient and the sum of the exponents:
[tex]\[ 20.50 \times 10^4 \][/tex]
5. Express in correct scientific notation:
Scientific notation requires that the coefficient be between 1 and 10. So we need to adjust [tex]\(20.50\)[/tex] to fit that requirement.
[tex]\[ 20.50 = 2.05 \times 10^1 \][/tex]
Therefore,
[tex]\[ 20.50 \times 10^4 = 2.05 \times 10^1 \times 10^4 \][/tex]
6. Combine the exponents once more:
[tex]\[ 2.05 \times 10^{(1+4)} = 2.05 \times 10^5 \][/tex]
So, the result of the operation [tex]\(8.20 \times 10^{-2} \times 2.50 \times 10^6\)[/tex] expressed in correct scientific notation is:
[tex]\[ \boxed{2.05 \times 10^5} \][/tex]