Given:
[tex]\[
\int_4^1 f(x) \, dx = 15 \quad \text{and} \quad \int_1^3 f(x) \, dx = -14
\][/tex]

Compute the following integral:
[tex]\[
\int_3^4 4 f(x) \, dx
\][/tex]



Answer :

Sure, let's solve this step by step given the integrals:

[tex]\[ \int_{4}^{1} f(x) \, dx = 15 \quad \text{and} \quad \int_{1}^{3} f(x) \, dx = -14 \][/tex]

First, we need to find [tex]\(\int_{4}^{3} f(x) \, dx\)[/tex].

The integral from 4 to 1 can be split as follows:

[tex]\[ \int_{4}^{1} f(x) \, dx = \int_{4}^{3} f(x) \, dx + \int_{3}^{1} f(x) \, dx \][/tex]

We'll solve for [tex]\(\int_{4}^{3} f(x) \, dx\)[/tex]. Notice that [tex]\(\int_{3}^{1} f(x) \, dx\)[/tex] is the negative of [tex]\(\int_{1}^{3} f(x) \, dx\)[/tex]:

[tex]\[ \int_{3}^{1} f(x) \, dx = -\int_{1}^{3} f(x) \, dx = -(-14) = 14 \][/tex]

Now we have:

[tex]\[ \int_{4}^{1} f(x) \, dx = \int_{4}^{3} f(x) \, dx + 14 \][/tex]

Given that [tex]\(\int_{4}^{1} f(x) \, dx = 15\)[/tex], substituting into the equation, we get:

[tex]\[ 15 = \int_{4}^{3} f(x) \, dx + 14 \][/tex]

Solving for [tex]\(\int_{4}^{3} f(x) \, dx\)[/tex]:

[tex]\[ \int_{4}^{3} f(x) \, dx = 15 - 14 = 1 \][/tex]

[tex]\(\int_{4}^{3} f(x) \, dx\)[/tex] thus equals 1.

Now, we need [tex]\(\int_{3}^{4} f(x) \, dx\)[/tex]. We know that:

[tex]\[ \int_{4}^{3} f(x) \, dx = -\int_{3}^{4} f(x) \, dx \][/tex]

Therefore,

[tex]\[ \int_{3}^{4} f(x) \, dx = -\int_{4}^{3} f(x) \, dx = -1 \][/tex]

Next, to find the integral [tex]\(\int_{3}^{4} 4 f(x) \, dx\)[/tex], we use the fact that multiplying the function [tex]\( f(x) \)[/tex] by a scalar [tex]\( c \)[/tex] will multiply the result of the integral by that scalar:

[tex]\[ \int_{3}^{4} 4 f(x) \, dx = 4 \cdot \int_{3}^{4} f(x) \, dx \][/tex]

Substituting the value we found:

[tex]\[ \int_{3}^{4} 4 f(x) \, dx = 4 \cdot (-1) = -4 \][/tex]

So the value of the integral is:

[tex]\[ \int_{3}^{4} 4 f(x) \, dx = -4 \][/tex]