2.4: If [tex]\sec 4 \theta = \operatorname{cosec}(\theta - 30^\circ)[/tex], where [tex]4 \theta[/tex] is an acute angle, find the value of [tex]\theta[/tex].



Answer :

To solve the equation [tex]\(\sec(4\theta) = \operatorname{cosec}(\theta - 300^\circ)\)[/tex] given that [tex]\(4\theta\)[/tex] is an acute angle, follow these steps:

1. Convert the trigonometric identities:
We know that [tex]\(\sec(x) = \frac{1}{\cos(x)}\)[/tex] and [tex]\(\operatorname{cosec}(x) = \frac{1}{\sin(x)}\)[/tex].

2. Rewrite the equation using these identities:
[tex]\[ \frac{1}{\cos(4\theta)} = \frac{1}{\sin(\theta - 300^\circ)} \][/tex]

3. Equate the denominators, since the numerators (1) are equal:
[tex]\[ \cos(4\theta) = \sin(\theta - 300^\circ) \][/tex]

4. Use the complementary angle identity of trigonometric functions:
We know that [tex]\(\sin(x) = \cos(90^\circ - x)\)[/tex].

Thus, [tex]\(\sin(\theta - 300^\circ) = \cos\left(90^\circ - (\theta - 300^\circ)\right)\)[/tex].

Simplify inside the parenthesis:
[tex]\[ \cos\left(90^\circ - (\theta - 300^\circ)\right) = \cos\left(90^\circ - \theta + 300^\circ\right) = \cos(390^\circ - \theta) \][/tex]

5. Substitute this back into the equation:
[tex]\[ \cos(4\theta) = \cos(390^\circ - \theta) \][/tex]

6. Since [tex]\(\cos(x) = \cos(y)\)[/tex] implies [tex]\(x = y + 360^\circ k\)[/tex] or [tex]\(x = -y + 360^\circ k\)[/tex] (for any integer [tex]\(k\)[/tex]), we solve for [tex]\(\theta\)[/tex]:

[tex]\(4\theta = 390^\circ - \theta + 360^\circ k\)[/tex] or [tex]\(4\theta = - 390^\circ + \theta + 360^\circ k\)[/tex].

Let’s focus on the positive cycle only, i.e., [tex]\(k = 0\)[/tex], to find valid angles within the given range.

For the first equation:
[tex]\[ 4\theta = 390^\circ - \theta \][/tex]
Add [tex]\(\theta\)[/tex] to both sides:
[tex]\[ 5\theta = 390^\circ \][/tex]
Solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \frac{390^\circ}{5} = 78^\circ \][/tex]

7. Check the condition that [tex]\(4\theta\)[/tex] must be acute:
[tex]\[ 4\theta = 4 \times 78^\circ = 312^\circ \][/tex]
This is not an acute angle (an angle less than 90°), which means there is no valid solution here that makes [tex]\(4\theta\)[/tex] an acute angle in this cycle.

8. Check for possible solutions using the negative cycle conversion (which does not yield valid acute angles either):
Therefore, given our criteria, there are no valid solutions where [tex]\(4\theta\)[/tex] is an acute angle matching the condition provided in the problem.

Thus, there is no value of [tex]\(\theta\)[/tex] that satisfies the equation [tex]\(\sec(4\theta) = \operatorname{cosec}(\theta - 300^\circ)\)[/tex] while keeping [tex]\(4\theta\)[/tex] as an acute angle. The answer is that no valid [tex]\( \theta \)[/tex] exists under these conditions.