\begin{tabular}{|c|c|}
\hline[tex]$\$[/tex] 3,000[tex]$ & $[/tex]\[tex]$ 1,000$[/tex] \\
\hline Room \& Board & \\
\hline[tex]$\$[/tex] 1,000[tex]$ & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ University Financial Analysis } \\
\hline Costs per Year & Financial Aid Package per Year \\
\hline Tuition \& Fees & Scholarships \& Grants \\
\hline$[/tex]\[tex]$ 10,000$[/tex] & [tex]$\$[/tex] 15,000[tex]$ \\
\hline Room \& Board & Work-Study \\
\hline$[/tex]\[tex]$ 11,500$[/tex] & [tex]$\$[/tex] 4,000[tex]$ \\
\hline
\end{tabular}

Which statement about the cost of the options is true?

A. Option B will save him $[/tex]\[tex]$ 1,000$[/tex].
B. Option B will save him [tex]$\$[/tex] 2,000[tex]$.
C. Option A will save him $[/tex]\[tex]$ 14,000$[/tex].
D. Option A will save him [tex]$\$[/tex] 17,500$.



Answer :

To determine which statement about the cost of the options is true, we need to compare the total costs of both options, taking into account the financial aid for Option B.

### Option A: Costs
- Room & Board: \[tex]$3,000 - Tuition & Fees: \$[/tex]1,000
- Additional Costs: \[tex]$1,000 Total cost for Option A: \[ \$[/tex]3,000 + \[tex]$1,000 + \$[/tex]1,000 = \[tex]$5,000 \] ### Option B: Costs and Financial Aid - Tuition & Fees: \$[/tex]10,000
- Room & Board: \[tex]$11,500 Total cost per year for Option B before financial aid: \[ \$[/tex]10,000 + \[tex]$11,500 = \$[/tex]21,500 \]

### Financial Aid for Option B:
- Scholarships & Grants: \[tex]$15,000 - Work-Study: \$[/tex]4,000

Total financial aid for Option B:
[tex]\[ \$15,000 + \$4,000 = \$19,000 \][/tex]

### Net Cost for Option B:
Total cost for Option B after financial aid:
[tex]\[ \$21,500 - \$19,000 = \$2,500 \][/tex]

### Comparing Costs:
- Total cost for Option A: \[tex]$5,000 - Total cost for Option B after financial aid: \$[/tex]2,500

### Savings:
Savings by choosing Option B:
[tex]\[ \$5,000 - \$2,500 = \$2,500 \][/tex]

### Evaluating Statements:
- Option B will save him \[tex]$1,000. (False) - Option B will save him \$[/tex]2,000. (False)
- Option A will save him \[tex]$14,000. (False) - Option A will save him \$[/tex]17,500. (False)

Since none of the provided statements correctly describe the savings of \$2,500, the correct answer to the question is:

None of the above correct options.