Evaluate the expression for [tex]\( k = -2 \)[/tex] and [tex]\( m = -2 \)[/tex]. Simplify your answer.

[tex]\[
\frac{k^2 m - k}{m}
\][/tex]

[tex]\[
\boxed{}
\][/tex]



Answer :

To evaluate the given expression for [tex]\(k = -2\)[/tex] and [tex]\(m = -2\)[/tex], we need to follow several steps to simplify it and find the final result. The expression to evaluate is:

[tex]\[ \frac{k^2 m - k}{m} \][/tex]

First, substitute the given values of [tex]\(k\)[/tex] and [tex]\(m\)[/tex] into the expression:
[tex]\[ k = -2 \quad \text{and} \quad m = -2 \][/tex]

Next, substitute [tex]\( k \)[/tex] and [tex]\( m \)[/tex] into the expression:
[tex]\[ \frac{(-2)^2 \cdot (-2) - (-2)}{-2} \][/tex]

Let's break this down step by step:

1. Compute [tex]\( (-2)^2 \)[/tex]:
[tex]\[ (-2)^2 = 4 \][/tex]

2. Multiply this result by [tex]\( m = -2 \)[/tex]:
[tex]\[ 4 \cdot (-2) = -8 \][/tex]

3. Subtract [tex]\( k = -2 \)[/tex]:
[tex]\[ -8 - (-2) = -8 + 2 = -6 \][/tex]

Now, place this result in the numerator and divide by [tex]\( m = -2 \)[/tex]:
[tex]\[ \frac{-6}{-2} \][/tex]

4. Simplify the fraction:
[tex]\[ \frac{-6}{-2} = 3 \][/tex]

Thus, the simplified value of the expression is:
[tex]\[ 3 \][/tex]

So, the final answer is:
[tex]\[ \boxed{3} \][/tex]