Consider the following reaction at 298 K:

[tex]\[ N_2O_4(g) \leftrightarrow 2 NO_2(g) \quad K_p = 0.142 \][/tex]

What is the standard free energy change at this temperature?

Describe what happens to the initial system, where the reactants and products are in standard states, as it approaches equilibrium.



Answer :

To determine the standard free energy change ([tex]\( \Delta G^\circ \)[/tex]) of the given reaction at 298 K, we use the relationship between the equilibrium constant ([tex]\( K_p \)[/tex]) and the standard free energy change. The relationship is given by the formula:

[tex]\[ \Delta G^\circ = -RT \ln(K_p) \][/tex]

where:
- [tex]\( R \)[/tex] is the gas constant, which is 8.314 J/(mol·K)
- [tex]\( T \)[/tex] is the temperature, which is 298 K
- [tex]\( K_p \)[/tex] is the equilibrium constant for the reaction, which is 0.142

Using the values provided:

1. Identify the given quantities:
- [tex]\( R = 8.314 \)[/tex] J/(mol·K)
- [tex]\( T = 298 \)[/tex] K
- [tex]\( K_p = 0.142 \)[/tex]

2. Write down the formula for [tex]\(\Delta G^\circ\)[/tex]:
[tex]\[ \Delta G^\circ = -RT \ln(K_p) \][/tex]

3. Substitute the given values into the formula:
[tex]\[ \Delta G^\circ = -(8.314 \, \text{J/(mol·K)}) \times (298 \, \text{K}) \times \ln(0.142) \][/tex]

4. Calculate [tex]\( \ln(0.142) \)[/tex]:
[tex]\[ \ln(0.142) \approx -1.950355 \][/tex]

5. Complete the substitution:
[tex]\[ \Delta G^\circ = -(8.314 \, \text{J/(mol·K)}) \times (298 \, \text{K}) \times (-1.950355) \][/tex]
[tex]\[ \Delta G^\circ = 4836.0427073030605 \, \text{J/mol} \][/tex]

Therefore, the standard free energy change ([tex]\( \Delta G^\circ \)[/tex]) for the reaction at 298 K is approximately [tex]\( 4836 \)[/tex] J/mol or [tex]\( 4.84 \)[/tex] kJ/mol (upon rounding).

---

### Description of the System Approaching Equilibrium

When the reaction [tex]\( N_2O_4(g) \leftrightarrow 2 NO_2(g) \)[/tex] is at standard state conditions, it means that initially, the reactants and products are each present at 1 atm pressure.

As the system approaches equilibrium:

- The reaction will adjust such that the ratio of the concentrations of products to reactants reaches the equilibrium constant, [tex]\( K_p = 0.142 \)[/tex].

Since [tex]\( \Delta G^\circ \)[/tex] is positive (4836 J/mol), the formation of [tex]\( NO_2 \)[/tex] from [tex]\( N_2O_4 \)[/tex] is non-spontaneous under standard conditions. Energy is required to convert [tex]\( N_2O_4 \)[/tex] into [tex]\( NO_2 \)[/tex].

- The initial state with [tex]\( N_2O_4 \)[/tex] and [tex]\( NO_2 \)[/tex] each at 1 atm is not at equilibrium, given that [tex]\( K_p = 0.142 \)[/tex]. This indicates that there is a higher initial ratio of [tex]\( N_2O_4 \)[/tex] compared to [tex]\( NO_2 \)[/tex] at standard conditions.

- As the system progresses towards equilibrium, [tex]\( N_2O_4 \)[/tex] will increasingly dissociate into [tex]\( NO_2 \)[/tex] until the partial pressures adjust to satisfy the equilibrium constant.

In summary, despite the positive [tex]\( \Delta G^\circ \)[/tex], meaning the standard reaction is not spontaneous, the system under standard conditions will spontaneously move to the state where [tex]\( K_p = 0.142 \)[/tex], which involves the production of more [tex]\( NO_2 \)[/tex] from [tex]\( N_2O_4 \)[/tex].