Simplify

[tex]\[
4x\left(2x^3 - 3x^2 + 5x\right) - 3x^2\left(2x^2 - 1\right)
\][/tex]

A. [tex]\[8x^4 - 12x^3 + 20x^2 - 6x^2 - 3x\][/tex]

B. [tex]\[2x^4 - 12x^3 + 23x^2\][/tex]

C. [tex]\[8x^3 - 18x^2 + 20x - 3\][/tex]

D. [tex]\[14x^4 - 12x^3 + 23x^2\][/tex]



Answer :

Sure, let's simplify the given expression step-by-step:

[tex]\[ 4 x\left(2 x^3-3 x^2+5 x\right)-3 x^2\left(2 x^2-1\right) \][/tex]

First, we need to distribute [tex]\(4x\)[/tex] inside the first parentheses:

[tex]\[ 4x(2x^3) + 4x(-3x^2) + 4x(5x) \][/tex]

Calculating each term separately:

[tex]\[ = 4x \cdot 2x^3 + 4x \cdot (-3x^2) + 4x \cdot 5x \][/tex]
[tex]\[ = 8x^4 - 12x^3 + 20x^2 \][/tex]

Next, we distribute [tex]\(-3x^2\)[/tex] inside the second parentheses:

[tex]\[ -3x^2(2x^2) + (-3x^2)(-1) \][/tex]

Calculating each term separately:

[tex]\[ = -3x^2 \cdot 2x^2 + (-3x^2) \cdot (-1) \][/tex]
[tex]\[ = -6x^4 + 3x^2 \][/tex]

Now, combine all the terms from both parts:

[tex]\[ 8x^4 - 12x^3 + 20x^2 - 6x^4 + 3x^2 \][/tex]

Combine the like terms:

For the [tex]\(x^4\)[/tex] terms:
[tex]\[ 8x^4 - 6x^4 = 2x^4 \][/tex]

For the [tex]\(x^3\)[/tex] terms:
[tex]\[ -12x^3 \][/tex]
(there are no other [tex]\(x^3\)[/tex] terms to combine with)

For the [tex]\(x^2\)[/tex] terms:
[tex]\[ 20x^2 + 3x^2 = 23x^2 \][/tex]

The final simplified expression is:

[tex]\[ 2x^4 - 12x^3 + 23x^2 \][/tex]

Thus, the correct answer is:

(B) [tex]\( 2x^4 - 12x^3 + 23x^2 \)[/tex]